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ABSTRACT
As the usage of data-intensive applications is increasing, moving
data between the storage and host is becoming an important bot-
tleneck. Smart storage has emerged as a solution to mitigate the
data-movement bottleneck, resulting in lower latency, better energy
efficiency, and better overall throughput. The last decade has seen
a proliferation of proposals for architectures for smart storage.

In this short study, we look at a representative sample of these
works and distill common lessons and techniques from them: first,
high selectivity in itself is not a guarantee for better performance,
second, it is important to match the chosen in-storage data lay-
out with that of the processing element and application and third,
leveraging heterogeneous processing elements inside smart storage
benefits efficiency and flexibility.

Our main goal in compiling and sharing the list of lessons is to
avoid reinventing the wheel when designing future smart storage
solutions. At the same time, we also identify aspects that will be
necessary for building future smart storage that can cater to varied
workloads but are not well covered in related work today.

1 INTRODUCTION
Processing large volumes of data is common in database applica-
tions, especially in those serving analytic queries looking for and
identifying patterns, discovering hidden relationships in the data, or
deriving aggregate values and statistics. Since large datasets often
do not fit in main memory, the host must load data from storage
to answer queries and this data movement is an important bottle-
neck in modern database systems. One of the solutions for this
bottleneck is bringing the computation near or inside the storage.
By pre-processing data close to the source and transferring only
a fraction of the original dataset to the host, data movement can
be reduced significantly. This leads to improved performance and
often also increased energy efficiency. In addition, by reducing the
load on the host CPU and memory, such offloading techniques free
up host resources that can be used to run more parallel queries or
additional compute-intensive tasks.

There is a rich body of related works for bringing computation
near data – with a history reaching back to more than a quarter
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of a century [5, 18]. In this study, we do not consider a “historical”
perspective and instead focus on the representative projects of the
last decade. The reason for this is that the slowing down of Dennard
Scaling [11] means that the relative bandwidth/compute capacities
these works consider are comparable to each other, as opposed to
work from the early 1990s, for instance, that operated at orders of
magnitude lower bandwidth and CPU performance.

The surveyed related work proposes an exciting variety of de-
ployment options for processing elements in the storage device: it is
possible to use the embedded CPU of the disk for running offloaded
computation [9, 16, 25], insert a specific CPU inside the disk for run-
ning the in-storage computation [13], using processing elements
based on Field Programmable Gate Arrays (FPGAs) specifically
designed for this purpose [21, 22, 27], or even a combination of an
embedded CPU and a specialized processing element [8, 12, 26].

Despite the fact that smart storage is a mature field, after survey-
ing the related work, we still found that lessons and opportunities
are often implicit or formulated specific to a workload/query com-
bination. In this work, we highlight lessons and opportunities for
building future smart storage solutions, applicable to novel, not
yet implemented, operators. SQL query acceleration has been stud-
ied in detail and it is unclear what further improvements can be
achieved – with emerging machine learning workloads [14, 17] and
other types of computationally intensive tasks [10, 23] however,
new opportunities emerge. In this context, it is important to take
stock of what the related work can teach us and avoid reinventing
the wheel to ensure that the new solutions will be as useful and
efficient as possible. Therefore, we identified three principles for
designing the next smart storage device:

(1) Balance the compute cost of offloading against the data se-
lectivity: It is well understood that offloading to smart storage
is (most) useful for operators that can significantly reduce data
movement but, as the related work demonstrates, the choice of
offloaded operations has to also take into account their compute
requirements. Since smart storage solutions have less compute
capacity than host CPUs, offloading too compute-intensive
tasks might result in an overall slowdown even if they filter out
large portions of the data. Since most related work considers
only operators running alone on the smart storage, further in-
vestigation is necessary for making robust run-time scheduling
decisions.

(2) Match the data layout with the expected layout of the
application and processing element: Specialized implemen-
tations of operators, especially those relying on FPGAs, will
work well only if they are designed with the right data layout
in mind. Related work shows that, in case the data is laid out,
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Table 1: Overview of studied smart storage solutions from the last decade

Name (year) Platform Processing
Element

Evaluated
Applications

Evaluated
Queries

Data Bandwidth
to/from storage

Processing ele-
ment location

Wisconsin
Smart SSD
[9] (2013)

SAS SSD Embed. CPU
(shared with SSD
controller)

SQL operators 2 custom +
1 TPC-H

custom+
TPC-H (110GB)

550MB/s co-processor

Ibex
[27] (2014)

Custom FPGA
with SATA SSD

FPGA SQL operators 6 custom +
1 TPC-H

TPC-H (10GB) 300MB/s,
125MB/s

in datapath

Biscuit
[12] (2016),
YourSQL
[15] (2016)

Commercial SSD Embed. CPU
(shared with SSD
controller) + ASIC

SQL operators,
pointer chasing

custom +
all TPC-H
queries

TPC-H (160GB) PCIe
Gen3 x4
(3.2 GB/s)

in datapath
(ASIC),
co-processor
(CPU)

Summarizer
[16] (2017)

LS2085a intelligent
SSD (running
at 200MHz)

Embed. CPU
(shared with SSD
controller)

SQL operators,
data integration

2 custom +
3 TPC-H

TPC-H (100MB) PCIe
Gen3 x4
(3.9 GB/s)

co-processor

Insider
[20] (2019)

Drive Prototype FPGA SQL operators,
decompression,
KNN

1 custom custom
(60GB)

PCIe
Gen3 x8,x16
(7.8,15.7 GB/s)

on the side

AQUOMAN
[28] (2020)

Simulation and
FPGA prototype

FPGA SQL operators all TPC-H
queries

TPC-H
(1 TB)

PCIe on the side

FANS
[19] (2021),
NASCENT
[21] (2021)

Samsung
SmartSSD

FPGA Bitonic Merge Sort - (Terasort [4],
233elements)
,(random, 210-
213 elements)

PCIe
Gen3 x4

on the side

Newport
[13] (2022)

NGD Systems
Newport SSD

Dedicated Embed.
CPU

SQL operators,
distributed
training-inference

YCSB - PCIe on the side

e.g., in a columnar fashion in storage instead of row-oriented
fashion (or vice versa), the data transformations can consume
significant additional resources [24], reducing the overall per-
formance gains significantly.

(3) Embrace heterogeneity: Most of the surveyed related works
rely on either a low-power CPU or a fully specializedASIC/FPGA
for processing offload. Given the different tasks required for suc-
cessful offloading (data parsing, number crunching, metadata
processing, etc.) we believe that future solutions should have
heterogeneous processing elements (e.g., as in Biscuit [12]).
The main challenge of using such architectures, however, is in-
creased scheduling and resource allocation complexity. Luckily,
the database community is well prepared in overcoming such
challenges!

2 SUMMARY OF SELECTED RELATEDWORK
A wide variety of applications can benefit from smart storage
but, in the context of this paper, we focus on their use in ana-
lytical databases. Among the platforms that we surveyed, many
are designed specifically for use in databases and SQL operators,
e.g., Ibex [27], AQUOMAN [28], YourSQL [15], FANS [19] and
NASCENT [21]. Others are designed for general purpose offloading
but are evaluated predominantly on database use-cases, e.g., Wis-
consin Smart SSD [9], Biscuit [12], Summarizer [16], Insider [20],
and NGD Newport [13].

It can be also seen in Table 1 that most of the selected related
works have been evaluated, entirely or partially, using SQL oper-
ators. The datasets and workloads are typically generated using

TPC-H. The size of the datasets used in the evaluation ranges from
tens or hundreds of gigabytes (in most related work) to a terabyte
(in AQUOMAN [28]). It is important to point out that most related
work only considers a subset of TPC-H queries: they typically omit
the queries that cannot benefit from in-storage acceleration. Even
though this allows the authors to focus on studying the scenarios
where smart storage shines, it makes it difficult to understand how
database systems equipped with smart storage will behave on the
entirety of a large workload, comprised of varied queries.

In addition to SQL, a subset of the related work [12, 13, 20]
explores the benefits of offloading in other applications. They study
operations such as data decompression, K-nearest neighbor search,
and accelerate distributed ML training and inference tasks.

The studied related work exhibits a large variation when it comes
to the type of the processing element used and can be grouped into
ones that use low-power embedded CPUs [9, 13, 16], FPGAs or
similar ASICs [19–21, 27], or a combination of the two [12, 15]. Ad-
ditionally, we can categorize the related works into three categories,
based on the location of the processing element relative to the flash
storage device (also shown in Figure 1):

(a) Shared processor / co-processor: In early approaches to build-
ing smart storage, the embedded CPU of the SSD itself was used
to perform computation [9]. Since such embedded CPUs have
low performance and few cycles free for computation, there is
also an option to deploy a larger CPU or a heterogeneous co-
processor with it. The benefit of this architecture is that all data
passing through the SSD control logic can be accessed by the
offloaded operator without overhead – it requires, however, very
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(a) Processing happening in
CPU shared with SSD

controller (co-processor)

(b) Dedicated
processing element in

the data path

(c) Dedicated processing element sits on
the side of the storage

Figure 1: The processing in Smart Storage solutions is usually positioned in one of these three categories.

tight logical and physical integration of core SSD functions (such
as FTL) and the offloaded computation.

(b) In data path: In this category, all of the data that is accessed by
the host will pass through the processing element. In such archi-
tectures, the processing element needs to process the data at the
same or higher bandwidth than that of data loading from stor-
age to host – otherwise, the presence of the processing element
would lead to slowdowns.

(c) On the side: In this third category, the processing element is
connected to the storage device through an interconnect (e.g.,
PCIe), and both of them are connected to the host, either as
a single logical unit (e.g., as the Samsung SmartSSD [2]) or as
two separate ones (e.g., as the NGD Newport SSD [13]). Data
has to be moved specifically for the purpose of processing from
the storage medium to the processing element, before the re-
sults can be sent to the host. This means, on the one hand, that
only the data pertinent to the offloaded task is loaded from the
storage drive but, on the other hand, there is additional data
movement happening in the system, introducing latency and
potential bandwidth bottlenecks.

In the following, we look briefly at the details of the selected ar-
chitectures: the overview of the system architecture, how they
offload the computation to the storage, and what kind of processing
element they use to run the offloaded computation.

Wisconsin Smart SSD [9]. Wisconsin Smart SSD is a framework
that implements the core of the software that is needed for offload-
ing and running user-defined applications in the smart storage. Its
overall architecture is depicted in Figure 2. Embedded processors
in the SSD are used to run the offloaded computations. This frame-
work consists of two parts: 1) a communication protocol between
the host and the smart storage, and 2) application programming
interfaces (APIs) to be used in the user-defined programs that will
run on the embedded processors.

This framework is evaluated using a SAS SSD with Microsoft
SQL Server. Three SQL queries consisting of selection, projection,
and aggregation are used to evaluate the framework (the framework
is general and could also be used to run other queries or programs

Figure 2: Wisconsin Smart SSD framework. A set of APIs is
provided to be used in the offloaded user-defined programs.

as well). To offload the computation to the storage, the user pro-
gram must first start a session using the communication protocol’s
commands, and then it can use the protocol’s GET command to
retrieve the status or final results from the storage. With multiple
session IDs, several programs can run in parallel inside the storage.

Ibex [27]. Ibex uses an FPGA to design and implement an intelli-
gent storage engine for the MySQL database. The FPGA is placed
in the data-path between the storage and the host. Ibex is the only
work with in-data-path processing that processes the data at line-
rate. As it’s shown in Figure 3, there are three main components
implemented in the FPGA: 1) Parsing and Projection, in this com-
ponent, the raw data coming from the storage media is parsed
and based on the control information from the host, the database
tuples are “narrowed” down to the columns that are part of the
projection. 2) Selection, this component processes the data from
the Parser component in a pipelined manner. For each tuple, one
match signal is generated and it is set to high if the tuple matches
the predicates in the WHERE clause. The Selection component
supports the WHERE clauses consisting of predicates which are
a comparison between a fixed-length column (e.g. integers) and a
constant (it means that predicates such as comparing with a string
should be executed in software). This component can support a
certain number of predicates, and WHERE clauses containing more
than this specific number could be evaluated both in software and
hardware. 3)Group-by Aggregation, in this component, a specialized
fully-pipelined hardware hash table is designed to handle group-by
operations in queries. In case of occurring hash collisions, the tuples
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Figure 3: Overview of the offloaded operations in Ibex. The
processing element (FPGA) is placed in the data-path and

processes the data at line-rate.

will be bypassed to be run in the host software. To implement this
hash table, it’s possible to use both BRAM and DRAM. A write-
through caching layer is created when using DRAM to prevent data
hazards and mitigate the effect of DRAM read latency.

To extend the MySQL storage engine and to communicate with
the FPGA, a driver is implemented and is accessible within the
MySQL source code. Gigabit Ethernet is used for communication
between the host and the FPGA, and a slow SATA II link allows the
FPGA to access the SSD. As shown in Table 1, Ibex and Wisconsin
Smart SSD are two old works that target slow storage protocols.

Biscuit [12] and YourSQL [15]. Biscuit is an in-storage compu-
tation framework that has been designed with a focus on being
programmable and general. It uses the embedded processor of the
SSD and also a hardware pattern matcher in each channel of the
SSD to run the offloaded computations, which makes it the only re-
lated work that makes use of a heterogeneous design. The YourSQL
database system, on the other hand, is integrated with Biscuit and
is implemented on a branch of MariaDB. To use the Biscuit frame-
work, YourSQL makes code changes to the query planner and the
storage engine of the MariaDB. Both works use all TPC-H queries
for evaluation.

The overall system architecture of Biscuit is shown in Figure 4.
The programming model of Biscuit consists of computation units
and coordination units. The offloaded tasks running inside the
embedded CPU of the SSD are the computation units (SSDlets in
Figure 4). The coordinator units are the tasks running in the host
and are responsible for creating, managing, and also establishing
the relation of producer and consumer among the tasks running
in the embedded CPU. There are two libraries provided to write
programs to be run in the SSD (libslet) and the host(libsisc). The host
library has a proxy class that acts as an interface to the programs
running inside the SSD (as shown in Figure 4).

In YourSQL (Figure 5), the query planner and the query executor
are aware of the in-storage processing. The decision of whether
to offload a query or not is taken automatically in the query plan-
ner. This is the only work that estimates the benefit of in-storage
computation before offloading each query. To realize which table
benefits more from offloading (this relates to join operations when
there are multiple tables), YourSQL uses two metrics. The first one
is the "Limiting score" which shows how restrictive the filter predi-
cates are (for that specific table). The second one is the "filtering
ratio" which is estimated using a "sampler task". YouSQL offloads

Figure 4: Biscuit system architecture. A library is provided
in Biscuit to be used in the host system and acts as an
interface for the tasks running in the SSD’s processor.

Figure 5: YourSQL system architecture. The decision to
offload a task or not is made based on the task’s potential

benefit from offloading.

the sampler task to the SSD. It scans a small portion of the table
instead of scanning all of it. Then, it estimates the "filtering ratio"
which is calculated by dividing the number of match pages by the
number of scanned pages by the sampler task. Considering one join
query, YourSQL lists the tables with filter predicates, eliminates the
small tables, selects a table with the highest Limiting Score, and
estimates the Filtering Ratio for that table. If the estimated Filtering
Ratio is higher than a threshold, then it offloads the filtering task
for that specific table and places it first in the join order (to narrow
the intermediate tables).

Summarizer [16]. In this framework, a set of APIs are designed
to be used in the host applications in order to offload the tasks to
the storage. The authors use the embedded processor of the SSD
to run the user-defined tasks. Among the studied smart storage
solutions, this is the only work that dynamically monitors the tasks
that are waiting for in-storage processing and decides whether to
run a task in storage or not. As it is shown in Figure 6, Summarizer
consists of three main components that are implemented in the
SSD’s embedded processor: 1) Task Queue, which is a circular queue
and contains pointers to the user functions that must be run when
the host requests in-storage processing, 2) Task Controller, which
decides whether to run a requested in-storage task or not, 3) User
Functions Stacks, which store the user-defined functions. The Task
Controller module works in two modes: Dynamic Mode and Static
Mode. In Dynamic Mode, the controller makes the decision to run
the requested in-storage task inside the SSD or not based on the
empty slots in the Task Queue. Therefore, if there is not an empty
slot in the Task Queue, the unprocessed data is transferred to the
host even if the host requested in-storage processing. Conversely,
the Static Mode always runs the requested in-storage processing
task, regardless of the load on the embedded CPU.
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Figure 6: Summarizer high-level view. The Task Controller
decides whether to run an offloaded task or not based on the

number of waiting offloaded tasks in the Task Queue.

To evaluate the smart storage system, data integration algo-
rithms and three TPC-H queries are offloaded to the storage. The
APIs to be used for offloading the computation are implemented by
modifying the NVMe interface between the host and storage and
consist in new NVMe commands to initialize, compute and final-
ize the in-storage computations. The purpose of the initialization
command (INIT_TSKn) is to inform the Task Controller that the
host wants to run task "n" (n is used as task ID) inside the storage
and to initialize variables. Two commands (READ_PROC_TSKn
and READ_FILT_TSKn) are used to send the desired task ID to be
performed after reading the data from flash. After data is fetched
from flash, the Task Controller decides to run the task for the loaded
data or not. If it decides to execute the computation in storage, the
desired user function is invoked using the pointer in Task Queue.
In the end, the host can collect the result from storage using the
finalizing command (FINAL_TSKn).

Insider [20]. This storage system is the only general platform
implemented using an FPGA that also employs a flow control tech-
nique for sending data between the host and FPGA. As shown in
Figure 7, it consists of two main components that are inserted in-
side the storage: 1) an Accelerator Cluster, which is responsible for
running the user-defined offloaded tasks and is designed using an
FPGA. It consists of multiple slots and using partial reconfiguration,
new accelerators could be loaded to a particular slot by host users.
2) the Firmware, which is responsible for interacting with the host-
side in-storage computing (ISC) runtime library and driver. This
component is made by an extension to the original drive firmware.
By separating these two components, the control and data plane
are separated; the accelerator cluster is in the data plane and does
not decide where to read/write data from/to. By separating the
accelerator cluster from the control plane, user-defined program
execution is isolated from the system component in the control
plane. A virtual file abstraction, that could be accessed via a subset
of POSIX-like I/O APIs, is provided as the programming model
of the host side. In addition, a host-side library is implemented
which is available from the user-space and cooperates with the
drive hardware to support the flow control.

As there are multiple slots in the FPGA, parallel execution of
multiple tasks is possible. To support sending drive data to various
slots, a multiplexer and an ISC unit are inserted into the firmware.
Anytime the ISC unit receives a request from the host (with logical
block address and the slot index), it forwards the request to the
storage unit and pushes the slot index into a FIFO (Slots Index FIFO,

Figure 7: Architecture of Insider. An adaptive bandwidth
scheduler is used to support multiple simultaneous

applications running in the drive.

i.e. SIF in Figure 7). Then the dispatcher forwards the data from
storage to the popped slot index from SIF. Slot 0 is reserved for
normal I/O requests (i.e. without ISC) and contains pass-through
logic. There is also a dynamic weighted policy implemented to
divide the drive bandwidth fairly between various application slots.

AQUOMAN [28]. AQUOMAN (Analytics QUery Offloading MA-
chiNe) is an FPGA-based architecture that proposes an end-to-end
system for in-storage query acceleration. This general analytic
query processor is the only proposed microarchitecture for run-
ning queries, including multi-way joins. The proposed architecture
aims to speed up column-store databases and is integrated with
the MonetDB [1] column-store database. The AQUOMAN and the
host can access the NAND flash memory at the same time. To run
a query in this accelerator, each query must be compiled into a set
of "Table Tasks" and the accelerator’s components are configured
based on the parameters of the Table Tasks.

As shown in Figure 8, There are threemain accelerators in AQUO-
MAN’s Architecture. 1) Row Selector, this component is responsible
for evaluating the predicates and will send a bit vector mask show-
ing the qualified selected rows to the next component. 2) Row
Transformer, this component reads the data table from NAND flash
based on the bit vector mask (i.e. only reads the pages including
qualified rows) and consists of several processing elements to apply
computation on each row and produce the intermediate table to
send to the "SQL Swissknife" component. The processing elements
are initialized based on the Table Task, i.e. Table Task defines the
instructions to be performed on data. 3) SQL Swissknife, this com-
ponent has direct access to AQUOMAN’s DRAM and consists of an
array of accelerators to run standard SQL operators (e.g. accumulate,
merge,...). There are seven operators implemented in this compo-
nent and new operators can be added. The connection between the
input of the component and the accelerators is configured based
on "Table Tasks". The intermediate tables are stored in the DRAM
and retrieved again later for merging.

NASCENT [21] and FANS [19]. NASCENT and FANS are FPGA-
accelerated near-storage solutions that leverage Samsung SmartSSD [2].
Samsung SmartSSD is an NVMe flash drive that has an additional
FPGA accelerator and FPGA DRAM. The host processor can initiate
FPGA DRAM read/write requests and also send computation re-
quests to the FPGA. Furthermore, the host can initiate peer-to-peer
(P2P) connections between the FPGA DRAM and the NVMe SSD.
Once a connection is established, the host is no longer involved
and the data is transferred using the PCIe P2P link. In the related
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Figure 8: AQUOMAN proposes a microarchitecture for
running queries, including multi-way joins.

work, we found one other instance of FPGA-based smart storage
drive, Scaleflux [3, 7], that uses the FPGA to run both flash memory
control and offloaded computation. For running other functions
such as address mapping and garbage collection, the Scaleflux drive
is managed by the host.

As shown in Figure 9, the NASCENT accelerator is made up
of three modules. The first one is the dictionary decoding kernel,
which decodes the stored data to provide the input for the sort
module. The second module, a sort kernel, implements bitonic sort
and can be scaled based on the FPGA resources. The last module, a
shuffling kernel, is in charge of reordering the rest of the table based
on the sorted key column. To improve the access patterns for both
the sort kernel and the shuffle kernel, one particular storage format
is proposed that stores the key column in a column-store format
and the rest of the table as row-store (the sort kernel benefits from
column-store since it needs to access the key column and the shuffle
kernel benefits from row-store as it needs to access elements in one
row to change their location). Since the shuffling module requires
random reads from memory to access the table rows, multiple
shuffling kernels are used in the NASCENT architecture to fully
utilize the bandwidth available between the storage and FPGA.
Furthermore, a single dictionary decoder module is instantiated
and the rest of the FPGA resources are used for the sorting module.
The sort kernel uses FPGA BRAM to store the data and if the sorting
elements do not fit in the BRAM blocks of the sort module, the sort
kernel first sorts a chunk of the input, writes the result back to the
DRAM, sorts the next chunk of data, and eventually merges the
sorted data chunks stored in the DRAM.

The FANS accelerator design divides the sorting process into
two phases: the sorting phase and the merging phase. The FPGA
needs to be re-programmed to transition between these two phases,
which are both implemented using a merge tree with various tree
configurations. In the sorting phase, after sorting a chunk of the
data, the sorted data is written back to the DRAM and then the
next chunk of the data is sorted. The sorted data chunks are then
merged during the merging phase. The size of the merged data is
usually bigger than the FPGA DRAM capacity and the partially
merged data should be written back to the flash in this case.

NGD Newport [13]. In this smart storage drive, a dedicated pro-
cessor, running at 1GHz, is inserted inside the SSD to run the of-
floaded applications and can run a full operating system (e.g. Linux).
This is the only commercially available system among the studied
works that inserts a dedicated CPU with the SSD controller on the
same custom chip to run the offloaded computations. As shown in

Figure 9: NASCENT and FANS system architecture. Both
systems use Samsung SmartSSD and the difference is in the

designed FPGA accelerator.

Figure 10, there are three components in the design of this drive:
1) the front-end subsystem, which is responsible for the communi-
cation between the host and the drive, and notifies the back-end
subsystem if a new I/O command is received. 2) the back-end sub-
system, which is responsible for managing the NAND flash memory
and tasks such as address translation and garbage collection. 3) the
in-storage processing (ISP) engine, which is responsible for running
offloaded applications.

There is also a TCP/IP tunneling system implemented on the
regular PCIe between the host and the dedicated processor for in-
storage processing (ISP). Using this link, the host programs can
easily communicate with the applications running in the ISP with
a TCP/IP link. Using this link, the dedicated processor inside the
SSD could be also used as a node in a distributed application.

A Customized Block Device Driver (CBDD) is implemented to
enable the ISP to access the flash memory (by communicating with
the back-end system). This driver is optimized for on-chip commu-
nication. Another important feature of the Newport device is the
shared file system between the host and ISP. To provide synchro-
nization between the ISP engine and the host’s operating system, a
software layer has been implemented. This synchronization tech-
nique makes it possible for the operating system in the host and
the ISP engine to concurrently mount one storage media.

3 PRINCIPLES FOR DESIGNING FUTURE
SMART STORAGE

Studying recent related works reveals that the choice of data lay-
out, workload characteristics (such as selectivity of query mix) as
well as the level of integration of the hardware accelerator result
in widely different performance improvements. Analyzing these
factors teaches us lessons that will be useful when designing future
smart storage devices or when determining which types of opera-
tions of novel data-intensive applications to offload to the storage.
In the following, we present the three main “guiding principles” we
identified and provide supporting evidence from related work.
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Figure 10: NGD Newport architecture. It employs a dedicated
general processor (ISP) for running offloaded computations.

3.1 Balance the compute cost of offload against
the data selectivity

When offloading a task to smart storage, a significant reduction in
data movement does not always lead to end-to-end performance
improvement; one must also consider the compute requirements
of the offloaded task and the compute capacity of the processing
element in the storage.

Most related work focuses on a relatively narrow set of filtering
operations (e.g., equality filtering, string search) that typically only
bring a fraction of the data up to the host. Hence, the datamovement
bottleneck can be greatly reduced. Figure 11 depicts some of the
speedup numbers reported in the studied related works for various
selectivity values 1: as a rule of thumb, higher selectivity (less tuples
selected and sent to host) leads to higher speedup and the low
selectivity cases (most tuples sent to host) result in a slowdown or
only a minor speedup. Herein lies a challenge: in order to decide
what filter to offload, the system needs to predict the selectivity of
the query – this can be difficult to always get right.

Even with precise selectivity estimation, query speedup cannot
always be predicted. As an illustrative example, consider that even
though we would expect a large speedup with highly selective
query, Figure 11 shows that there is a case for Wisconsin Smart SSD
where the system slows down even with 0.1% selectivity (relative
speedup of 0.91x). The reason for this is that the storage’s embedded
CPU becomes a bottleneck.

As an alternative to selectivity estimation and cost functions,
in some cases it is possible to design the processing element such
that it operates at a fixed rate regardless of the complexity of the
offloaded operations (granted, of course, that this operation “fits”).
For instance, in Ibex [27], filtering and group by offloading always
processes the data at constant rate and, even if the offloading does
not result in data reduction, the overall system does not experience
slowdowns.

1It should be noted that the numbers were calculated in different experiments and are
shown in one graph to demonstrate how selectivity affects the speedup.
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Figure 11: Relative execution time for various selectivity
numbers. The line in the figure represents a value of one.
Therefore, dots above the line indicates system speedup,
while those below shows system slowdown.

3.2 Matching the data layout with the expected
layout of the application and processing
element

In order to get the most out of specialized hardware, the data layout
adopted by the database should ideally match what the processing
element handles most efficiently, Otherwise, performance benefits
will be significantly reduced due to additional data transformations.

A concrete example of how data layout transformations cause
overhead can be found in the recent work by Sidler et al. [24],
that builds an FPGA-based regular expression matching accelerator
for databases. The FPGA is deployed not in storage but as a co-
processor in an Intel Xeon+FPGA machine. In this system, the data
is passed to the accelerator from the database in PAX-like pages.
These need to be parsed and realigned before filtering can take place.
The time required for this data transformation is roughly half of
the time required for running the main computation – even though,
in this particular design, these operations are fully pipelined, a
significant portion of the FPGA is taken up by the parsing logic.
With a better matching data layout, these FPGA resources could be
used to increase the regular expression matching circuit capacity.

Generally, avoiding loading data that is not related to the offload
to the processing element will be beneficial. For instance, as shown
in Table 2, the Wisconsin Smart SSD architecture shows better
performance improvement with the PAX layout (in which one
column of the data table is grouped together inside a page) [6] than
with the N-ary storage model (NSM) layout (row-store). The reason
for this is that the smart SDD’s processor has an instruction that
enables it to load multiple data from the internal DRAM of the
device at once. As a result, with the PAX layout, only the column
values required for calculating the predicates of interest are loaded.
This increases DRAM access bandwidth and reduces runtime.

The NASCENT architecture is an other example that adopts a
custom data layout that benefits the accelerator. The sort kernel
benefits from column-store as it needs to access the key column
elements, whereas the shuffle kernel benefits more from row-store
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Table 2: Speedup for Various Data Layouts [9]

Query NSM
(row-based)

PAX
(col-based)

select, selectivity=0.1% 1.77 2.63
select-aggr., selectivity=0.1% 1.88 2.76

since it needs to access the element of one row together. As a
result, NASCENT stores the key-column consecutively and the rest
of the data table as row-store. In this way, data could be loaded
sequentially into both kernels.

3.3 Embrace heterogeneity
Most related works rely on either a low-power CPU or a specialized
FPGA or ASIC. The reason for this is often that choosing one or the
other simplifies the complexity of the prototype that needs to be
built. Sometimes, authors rely on an FPGA exclusively to demon-
strate that such devices can be used to build complete functional
systems – even though the addition of small CPU cores to the re-
programmable fabric might be a better engineering decision. After
reviewing the related work, for future systems we strongly advo-
cate for a heterogeneous design. It allows for “best of both worlds”,
running parts of the offloading logic that benefit from iterative pro-
cessing on CPU cores, and parts that benefit from massive parallel
execution and pipelining on specialized FPGA/ASIC cores. There
are examples of systems adopting such an approach. For instance,
Biscuit [12] and Catalina Smart SSD [26] both rely on specialized
accelerators cores in addition to code running on the CPU that is
the SSD controller.

Having a heterogeneous architecture, along with paying atten-
tion to designing the architecture in such a way that allows running
more than one type of processing at the same time to fully utilize
the resources, makes the smart storage more useful for a broader
range of applications. However, finding the right operations to de-
sign the specialized hardware for, as well as circuits that are not
too specialized for one specific operation but can handle running
multiple operations in the smart storage, requires more attention.

Figure 12 shows the speedup of running a simple string search
using the Biscuit [12] system. To run this application, Biscuit uses its
hardware pattern matchers which are placed in each channel of the
SSD. These pattern matchers give Biscuit a high search throughput
and the ability to run the task in parallel. Using these parallel
resources, increasing the system’s load has little impact on Biscuit’s
execution time (in the host system, the execution time increases
when the system’s load is increasing and as a result, the speedup
is increased as shown in Figure 12). However, if Biscuit would use
only its embedded CPU, which is low-power and slower than the
host CPU, to run this offloaded task the execution time would be
different. It would evolve in a similar manner to the host’s execution
time (that is, with increased parallelism, various overheads would
be incurred). As a result, using only the embedded CPU, without
hardware accelerators, would reduce the achievable speedup in this
application.
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Figure 12: In Biscuit [12], the hardware pattern matchers are
more efficient for highly parallel workloads than the host
CPU. Therefore, the achievable speedup increases slightly
with the parallel load on the system

4 CLOSING THOUGHTS
In this brief survey, we looked at the lessons and opportunities
from a large number of smart storage solutions from the last decade
and identified three principles that could be applied in the design
of future smart storage devices. First, highly selective queries and
reduced data movement do not “automatically” guarantee perfor-
mance improvements, and when deciding whether to offload or
not to offload a task, one needs to take into account the compute
capacity of the smart storage as well as the compute requirements
of the operators. Second, to prevent wasting processing resources
for unnecessary data transmissions, it is important to ensure that
the data layout matches the expected layout of the processing ele-
ment and application. Third, there are both efficiency and flexibility
arguments for using a heterogeneous architecture instead of basing
smart storage purely on low-power CPU cores or fully specialized
ASIC/FPGA units.

Industry and research trends indicate that the potential of using
smart storage has been recognized and they are no longer “exotic”
devices. At the same time, various issues still need to be addressed in
the design of smart storage devices. In our opinion, the following are
worthwhile directions for future research: designing tightly couples
heterogeneous offloading architectures (e.g. FPGAs alongside CPUs,
with fine-grained work partitioning), providing efficient scheduling
and resource management mechanisms, and enabling low-overhead
performance isolation between different applications using the
same smart storage device.
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