
An Experimental Framework for Improving the Performance of
BFT Consensus For Future Permissioned Blockchains

Man-Kit Sit
∗

City University of Hong Kong

Hong Kong

manksit@cityu.edu.hk

Manuel Bravo

IMDEA Software Institute

Spain

manuel.bravo@imdea.org

Zsolt István

IT University of Copenhagen

Denmark

zsis@itu.dk

ABSTRACT
Permissioned Blockchains are increasingly considered in enter-

prise use-cases, many of which do not require geo-distribution,

or even disallow it due to legislation. Examples include country-

wide networks, such as Alastria, or those deployed using cloud-

based platforms such as IBM Blockchain Platform. We expect these

blockchains to eventually run in environments with high band-

width and low latency modern networks, as well as with advanced

programmable hardware accelerators.

Even though there is renewed interest in BFT consensus algo-

rithms with various proposals targeting Permissioned Blockchains,

related work does not optimize for fast networks and does not

incorporate hardware accelerators – we make the case that doing

so will pay off in the long run. To this end, we re-implemented

the seminal PBFT algorithm in a way that allows us to measure

different configurations of the protocol. Through this we explore

the benefits of various common optimization strategies and show

that the protocol is unlikely to saturate more than 10Gbps networks

without relying on specialized hardware-based offloading.

Based on the experimental results, we discuss two concrete ways

in which the cost of consensus in Permissioned Blockchains could

be reduced in high-speed networking environments, namely, of-

floading to SmartNICs and implementing the protocol on standalone

FPGAs.

CCS CONCEPTS
• Computer systems organization � Distributed architec-
tures; • Hardware� Hardware accelerators; • General and
reference� Experimentation.

ACM Reference Format:
Man-Kit Sit, Manuel Bravo, and Zsolt István. 2021. An Experimental Frame-

work for Improving the Performance of BFT Consensus For Future Permis-

sioned Blockchains. In The 15th ACM International Conference on Distributed
and Event-based Systems (DEBS ’21), June 28-July 2, 2021, Virtual Event, Italy.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3465480.3466922

∗
Work done while at IMDEA Software.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8555-8/21/06. . . $15.00

https://doi.org/10.1145/3465480.3466922

1 INTRODUCTION
Blockchain is an emerging technology, considered increasingly

often beyond the crypto-currency world for business-to-business

use-cases. In contrast to public blockchains such as Bitcoin, that

are open systems in which anyone can participate, in business-to-

business scenarios the membership of the service is tightly con-

trolled and this permits the use of Byzantine fault tolerant (BFT)

consensus protocols at the core of the service to establish a total

order of transactions, instead of the more expensive Proof-of-Work-

based consensus protocols. Such systems are called permissioned
blockchains [11, 16, 49]. In a permissioned blockchain system, often

only a subset of the total number of participating nodes run the

BFT protocol [9, 44] and, in general, members have more control

over how and where to run the network [33].

Driven by opportunities in blockchain, there has been an in-

creased interest in BFT consensus protocols [29, 53, 58]. Interest-

ingly, the deployment model of permissioned blockchains can be

very different from permissionless ones likes Bitcoin. While the

latter is typically widely distributed, with bandwidth and latency

characteristics much like that of the world wide web, in the permis-

sioned blockchain space, there are use cases where nodes are under

tighter control (e.g., those in hosted environments on Amazon

Managed Blockchain [1] or IBM Blockchain Platform [4]), perhaps

even geographically confined (e.g., emerging country-wide net-

works, such as Alastria [48] in Spain). Nodes of such deployments

have access to higher bandwidth and lower latency communica-

tion than what we associate today with blockchains. Given the

increasing presence of programmable hardware devices in public

clouds [15, 26, 39], it is likely that nodes could even rely on these

for increasing performance.

If successful, blockchain technology will likely replace several

database solutions in the area of banking, trading and e-commerce.

Unfortunately, the performance of today’s permissioned blockchains

will not be satisfactory for these use-cases. For this reason, it is

important to start investigating strategies for increasing the speed

of BFT consensus using modern hardware available in clouds and

datacenters. As we show in Section 2, current BFT consensus im-

plementations are unable to saturate high bandwidth networks

(10Gbps and higher) without sacrificing latency.

Our goal is to investigate how far software can get us and to

what extent will it be useful, or even necessary, to use hardware

acceleration in the future. We apply an experiment-driven approach

to quantify the benefits of various existing optimization strategies.

For this, we build a framework that integrates a streamlined vari-

ant of the seminal PBFT [18, 19] consensus protocol and can be

configured at multiple levels. Our study reveals that, even after

applying various optimizations, achieving 10Gbps performance in

https://doi.org/10.1145/3465480.3466922
https://doi.org/10.1145/3465480.3466922

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy Man-Kit Sit, Manuel Bravo, and Zsolt István

software without relying on very large batches is still unlikely –

the road to 100Gbps rates will hence have to involve some forms of

hardware accelerators. We can also confirm that contrary to anec-

dotal evidence, hardware accelerators for cryptographic operations

alone will not result in significantly better performance because

the biggest cost remaining after parallelization and pipelining, even

in modestly sized consensus groups, is that of packet parsing and

hashing, that is, data-movement related operations.

To alleviate the cost of these operations, we propose two strate-

gies for incorporating specialized hardware, namely, emerging

Smart Network Interface cards (SmartNICs) and standalone FPGA

nodes to provide line-rate, predictable behavior. We present micro-

benchmarks motivating these strategies and discuss their main

benefits and open challenges.

Overall, this work brings three contributions:

• We identify the future need for low latency and high band-

width BFT consensus. Even though today the challenges

of Permissioned Blockchains lie in determining the right

governance model and integration with data management

solutions, if successful, these blockchains will have to pro-

vide high throughput, low latency, and the ability to scale

with faster networks and more powerful hardware.

• Weprovide an open-sourcemodular implementation of PBFT,

that we call ModuBFT1
, for experimenting with various soft-

ware and hardware strategies for accelerating PBFT and

similar protocols.

• Based on measurements carried out with our framework, we

identify two specific hardware acceleration scenarios that

will be able to saturate faster than 10Gbps networks even

for small consensus groups.

2 MOTIVATION
In this section, we motivate the need for investigating performance-

related aspects of BFT consensus protocols in environments with

high network bandwidth and low latency. We first discuss three

use-cases in which consensus nodes are geographically confined

by design or have access to high bandwidth networking and their

location can be controlled. Second, we show that state-of-the-art

BFT consensus cannot efficiently take advantage of fast networks,

further motivating the “de-construction” of the underlying protocol

for measurement purposes.

2.1 Use-cases
Single and Multi-Cloud Hosted Blockchains. Several cloud
providers are offering hosted blockchain solutions both as Software

as a Service (e.g., Azure Blockchain Service), and by simplifying

the deployment of open-source, commonly used, networks such

as Hyperledger Fabric (e.g., in IBM Cloud Blockchain Platform).

Given that a large portion of web-facing applications already run

in hosted environments, running blockchains as a “backend” in the

cloud is a natural step in many scenarios. In cloud environments

the blockchain nodes have access to high bandwidth networking

and low latencies within regions, and it is also to be expected that

with the emergence of more enterprise use-cases for permissioned

1
https://github.com/zistvan/ModuBFT

0 2,000 4,000 6,000 8,000
0

20

40

60

80

<2Gbps used at leader

>10x difference

Throughput [ops/s]

L
a
t
e
n
c
y
[
m
s
]

Batch=8

Batch=1000

Figure 1: State-of-the-art BFT consensus libraries fail to effi-
ciently utilize 10Gbps LAN connections (BFT-Smart with 7
nodes, 4KB payload, no logging)

ledgers, multi-cloud deployments will rely on dedicated links for

higher bandwidth across clouds and reduced data movement costs,

as it is already the case for CDNs. For this reason, when preparing

the next generation of Blockchain-focused BFT consensus libraries,

it is crucial to design with high bandwidth (10Gbps and above) and

low latency networks in mind.

Regional Replication by Design. There are emerging country-

wide permissioned blockchain networks such as Alastria [9, 48] in

Spain, that set out to provide a mechanism for any company within

a consortium to interact with any other one through smart contracts

that are recognized under the local legislation. Naturally, networks

like Alastria are run in geographically more confined environments

(i.e., single countries). Furthermore, in this type of networks, only

a small subset of the consortium nodes take part actively in con-

sensus (i.e., running the core operations of the network), making

them the critical performance point of the network. Due to these

two characteristics, we expect the consortium to optimize the envi-

ronment in which consensus nodes are deployed. Hence, when this

type of network matures, we expect the group of consensus nodes

to run in an environment with high bandwidth and low latency,

as well as to have advanced programmable hardware accelerators

(already commonly found in servers) at their disposal.

Geo-replicated Systems with Local Optimizations. The recent
work by Gupta et al. [33], called ResilientDB, argues that, in order

to build practical geo-distributed databases based on blockchain

technology, it is crucial to minimize cross-region communication

between nodes without reducing reliability or availability guaran-

tees. The proposed design has a hierarchical consensus mechanism

that runs several BFT consensus groups, with nodes close by, and

performs a geo-replication using a step that requires only a linear

number of messages in the failure-free case. Thus, given that the

performance of the consensus groups would drive the overall per-

formance of the system and that nodes within a group are close by,

one can expect these groups to be deployed in a environment with

high network resources.

https://github.com/zistvan/ModuBFT

An Experimental Framework for Improving the Performance of BFT Consensus For Future Permissioned Blockchains DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

Figure 2: In permissioned blockchains a coordination service authenticates nodes in the network and performs configuration.
There are significantly less consensus nodes than regular member nodes and their churn is minimal.

2.2 State-of-the-art BFT Consensus and Fast
Networks

To experimentally show that state-of-the-art BFT consensus pro-

tocols are unable to take advantage of fast networks, we measure

the performance of BFT-Smart [14], one of the most optimized BFT

consensus libraries available, on such networks. We have chosen

BFT-Smart for a few reasons: (i) with more that five years of de-

velopment, we consider it a serious attempt of implementing a

highly-performant BFT consensus, (ii) it integrates a consensus

protocol similar to the seminal PBFT protocol, on which most of

the modern BFT consensus protocols are based, (iii) it includes a set

of optimizations and refinements aiming to enhance performance

such as multi-core awareness and the use of cheaper cryptographic
operations when possible, and (iv) it is open source and actively

supported.

We configured BFT-Smart with 7 nodes with RSA1024 signatures

and MACs among the nodes, on server-grade machines connected

over a 10Gbps LAN (see the Experiments section for details). We ex-

periment with two batch sizes: 1000 request per batch (the default),

and a smaller one with 8 requests per batch. Figure 1 reports the av-

erage latency vs. throughput achieved by BFT Smart when running

the YCSB benchmark
2
with 4KB values. The experiments show that

the leader node is far from saturating the network connection. In

fact, it uses significantly less than 2Gbps-worth of bandwidth even

at saturation – showing that there is a need to explore how to de-

sign BFT consensus solutions that can saturate 10Gbps bandwidth,

and beyond.

Furthermore, BFT-Smart is unable to keep latencies consistently

low while delivering high throughput. As Figure 1 shows, BFT-

Smart exhibits a latency that is more than an order of magnitude

greater than the network’s response time. This is mainly because,

in order to enhance throughput, BFT-Smart employs batching ag-

gressively: it composes large batches of messages in an attempt

to reduce the overhead of consensus. Figure 1 shows that when

significantly reducing the batch size, the difference in throughput

is stark: the throughput drops by 4x. In this work, we investigate

the true and perceived trade-offs between latency and throughput

in BFT consensus protocols.

2
Default YCSB configuration from the BFT-Smart repository: updates only and a single

field per entry to avoid computational overhead in the nodes.

3 BACKGROUND
3.1 Permissioned Blockchains
Public blockchains are often associated with crypto-currencies and

are characterized by the fact that nodes can join without permission.

For this reason, many of these blockchains implement Proof-of-

Work or similar consensus methods [55] and are designed without

assumptions about the location and capabilities of the participat-

ing nodes. Permissioned ledgers [11, 16, 49], in contrast, rely on a

trusted service or a consortium to authenticate nodes when joining

the blockchain (but they do not assume trustworthiness of nodes).

This is useful in business-to-business scenarios where the goal of

the blockchain is not to offer anonymity but rather to logically

centralize data and run tamper-free “smart contracts” (i.e., the ap-

plication logic) on it. Example use-cases include ones in health

care [12], supply chain management [42], etc., but also in areas

such as banking and capital markets [17]. In these scenarios all

actors in the system are known but they want to protect against

malicious actions from the others.

As seen in Figure 2, permissioned blockchains are composed of

executor nodes and consensus nodes. For generality, we consider

these sets of nodes to be disjoint but, in practice, a node could

implement both roles. Clients of the blockchain system, i.e., users,

are external to this illustration. The coordination service shown

in the image is the trusted third party or a consortium of nodes

(that all members of the blockchain trust) that authenticates nodes,

configures the network, etc.

Permissioned ledgers usually provide one of two execution mod-

els: order-execute (OE), or execute-order-validate (EOV). The first

means that smart contracts with their specific inputs are submitted

first to the ordering service, that is, the consensus nodes, and then

executed on all nodes of the network. The EOV model simulates

the contract execution on a subset of the nodes and submits the re-

sulting “read-write set” for ordering. The nodes receive these from

the ordering service and update their state if the read-write sets do

not conflict with the ledger state. Even though these two models

offer different trade-offs, from the perspective of the underlying

consensus logic, they are very similar. For this reason in this work

we investigate BFT ordering without assuming one or the other

execution model.

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy Man-Kit Sit, Manuel Bravo, and Zsolt István

Client

Node1

Node3
Node4

Node2
PREPARE

COMMIT
VIEW_CHANGE

NEW_VIEW

RE
PL

Y(leader)

normal operation protocol view-change protocol

resume
protocol

PRE_PREPARE

stop
protocol

REQUEST

Figure 3: PBFT communication pattern during failure-free operations and recovery.

The question of how executor nodes “get” the ordered trans-

actions is also orthogonal to our investigation. We make the as-

sumption that, in general, executor nodes are interested in pulling

transactions from the ordering service as soon as they are ordered

(they can access at the block granularity to recover and to gos-

sip). With this assumption it is beneficial to explore not only the

throughput but also the latency improvements one could add to

BFT protocols. This is relevant as there is recent work on exploring

how the throughput [10, 28, 51] and latency [38] of blockchains

can be improved substantially in the presence of fast networks.

3.2 PBFT
The seminal PBFT [19] protocol is one of the most well-studied

protocols and that is why we use it in our study. The protocol

requires a minimum of 3𝑓 +1 nodes, which is the minimum number

of nodes that allows an asynchronous system to provide the safety

and liveness properties when up to 𝑓 nodes are faulty. For simplicity,

in this section, we consider the variant of PBFT that uses public-key

signatures. We depict its communication pattern in Figure 3.

The protocol proceeds in rounds called views. On each view,

one node is the leader and the rest are its followers. The protocol

moves to the next view only if the leader is faulty or if asynchrony

prevents the protocol to make progress. The process of changing

view is called view-change. At a given view 𝑣 , the leader sequences

and proposes client’s request in a PRE_PREPARE message to the

followers. When a follower receives a PRE_PREPARE message, it

first validates the leader’s proposal by checking the authenticity of

the client’s request and that it does not have another client request

already assigned to that sequence number. If the follower accepts
the request, it sends a PREPARE message to all nodes. When a node

(leader or follower) receives 2𝑓 + 1 matching PREPARE messages, it

considers the request as prepared and sends a COMMIT message to

all nodes. Intuitively, theses first two steps of the protocol (leader’s

proposal and the all-to-all communication step) ensure that correct

nodes agree on a total order for the requests within a view. When

a node receives 2𝑓 + 1 matching COMMIT messages for a client’s

request and all requests with a lower sequence number have been

committed locally, the node considers the request as committed
and replies to the client. This second all-to-all communication step,

together with the view-change protocol, guarantees that correct

replicas agree on the sequence numbers assigned to committed

requests even when committing them across views. Finally, a client

waits for 𝑓 + 1 matching replies before accepting the result.

When a node wants to move to the next view 𝑣 + 1, it first stops

executing the protocol and sends a VIEW_CHANGE message to all

nodes. A node sends in its VIEW_CHANGEmessage all client requests

that could have been committed. When the leader of 𝑣 + 1 gathers

2𝑓 + 1 of these messages, it computes the final set of potentially

committed requests O and sends it in a NEW_VIEW message to its

followers, together with the 2𝑓 + 1 VIEW_CHANGE messages based

on which O was computed. Upon reception of a NEW_VIEWmessage,

a follower first verifies the correctness of O. Then, it adds the new

information to its local state and resumes execution.

4 MODUBFT: EXPERIMENTAL FRAMEWORK
Our main goal is to study the effect of various optimizations of BFT

consensus with the permissioned blockchain use-case in mind. Our

framework, ModuBFT, integrates a streamlined variant of PBFT [18,

19]. We expect that the findings of this work are directly applicable

to other BFT consensus protocols [30, 43, 53, 58], that mostly are

optimized variants of PBFT.

One difference between our experimental framework and typical

BFT consensus implementations is that we do not rely on batching

by default. Our goal is to study the cost of running consensus

without batching, or with very small batches, to ensure that the

latency of the protocol is representative of the underlying network

latency.

4.1 Protocol Configurations Used
Implementing consensus protocols on multi-core CPUs leads to

the question of how to exploit the available parallelism given that

at their core, all protocols, including PFBT, require a serial deci-

sion making step. Many BFT and CFT consensus implementations

adopted a pipelined architecture [14, 20, 50] and in this work we

do the same.

The framework is parametric to the type of cryptographic oper-

ation used for the authentication of different message types: one

can choose between public-key (PK) signatures or message authen-

tication codes (MACs). We use in our experimental analysis the

following three configurations:

(1) Off-the-shelf: This variant makes no assumptions about the

system around it and uses PK signatures on all messages.

(2) Algorithmic optimizations: It replaces PK signatures with

MACs on all inter-node messages, similar to the optimiza-

tions described in the journal version of PBFT [18].

(3) Domain-optimized for Permissioned Blockchains: It further
eliminates PK signatures on responses to clients because

An Experimental Framework for Improving the Performance of BFT Consensus For Future Permissioned Blockchains DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

Figure 4: In ModuBFT, the consensus logic is implemented as a software pipeline, with data parallel execution for compute-
intensive steps.

client requests (transactions to order) will be logically packed

into blocks and it is enough to sign the blocks with a PK and

responses to clients with MACs.

Incoming messages from clients are by default using private-key

signatures in all variants to counter malicious clients (i.e., big-MAC

attack [21]).

Furthermore, one can configure the batching sizes, or disable

batching altogether, to explore the latency-throughput trade-off

when combined with cryptographic operations; and the parallelism

of tasks, such as the computation or verification of cryptographic

signatures.

4.2 Pipelined Execution
Implementing consensus protocols on multi-core CPUs leads to

the question of how to exploit the available parallelism given that

at their core, all protocols, including PFBT, require a serial deci-

sion making step. Many BFT and CFT consensus implementations

adopted a pipelined architecture [14, 20, 50] and in this work we do

the same. Such architectures are also beneficial because it is easier

to envision the integration of various accelerators than into mono-

lithic ones. One drawback, however, of the pipelining approach is

that performance can be bottlenecked on the slowest pipeline stage;

for this reason we will consider parallelism both across pipeline

stages and within pipeline stages wherever possible.

The ModuBFT pipeline decouples the building blocks of the

protocol and allows for future exploration of different acceleration

opportunities. The stages, also shown in Figure 4, are as follows:

(1) Unmarshal: incoming messages are received on TCP/IP con-

nections and unmarshaled, using one thread for each indi-

vidual node and client.

(2) Hash (RX) and Verify: each message is signed by its sender

using their private-key or authenticated using a MAC. In

either case, the message contents need to be hashed and this

hash has to be compared to the one in the signature/auth.

This operation is performed by multiple threads in a data-

parallel manner using round-robin scheduling to maintain

FIFO order of messages.

(3) Decision: This is where the protocol itself is running. Depend-
ing on the internal state and the content of the incoming

message, this step will produce one or multiple messages

with a list of recipients each.

(4) Hash (TX): This step hashes messages to prepare them for

signing/authentication. The operation in carried out in par-

allel for multiple messages (round-robin).

(5) Clone: Once messages have their hashes computed, this step

creates multiple copies of them to be sent later to individual

recipients. If, for instance, a PRE_PREPAREmessage has to be

sent to all participants, it is hashed once in the previous step

and then cloned in this step for each recipient.

(6) Sign/Auth: This step computes the signature/MAC to be at-

tached to each message in parallel. This layout is advanta-

geous because by default ModuBFT is set up to compute

different signatures and MACs for each recipient. For pro-

tocol variants in the evaluation that only use public-key

signatures, this step is merged with hashing to avoid redun-

dant computation
3
..

(7) Marshal: Signed messages with one recipient each are en-

queued on threads representing individual TCP/IP sockets.

These perform the serialization of the messages.

4.3 Implementation Decisions and Accelerator
Simulation

We implemented ModuBFT in Golang relying heavily on goroutines

for parallelism. We use the SHA256 cryptographic hash function to

compute digests, RSA-2048 for signatures and AES with 256bit keys

for MACs, using default Golang libraries. The messages exchanged

between nodes are serialized using Protocol Buffers and follow a

similar layout with a fixed set of integer fields followed by a variable

length “attached data” field.

To simulate a crypto accelerator, we add a switch to use RSA1024

signatures instead of the default RSA2048 ones. The difference be-

tween the two is 4x for signing and 2.5x for verification, comparable

with what one could expect from crypto accelerators in related do-

mains [8, 31, 41] factoring in various integration overheads.

Since we do not want to restrict the applicability of ModuBFT,

the messages coming from the clients are treated as BLOBs that are

recorded in a log. They are not applied, in the traditional sense, to a

state database or state machine. This is because in most blockchain

3
In case a specific BFT implementation would not use any MACs and would rely only

on signatures, the cloning could be simplified and performed entirely after the Sign step.

Either design, however, will have a similar performance as long as no cryptographic

operations are performed redundantly.

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy Man-Kit Sit, Manuel Bravo, and Zsolt István

0 5 10 15 20 25

D
o
m
a
in
+
A
c
c

D
o
m
a
in
-o
p
t.

M
A
C
+
A
c
c

M
A
C
w
it
h
in
n
o
d
e
sP

K
-O
n
ly
+
A
c
c

P
K
-O
n
ly

Sign all messages

Sign only client-facing ones

Sign only blocks

Throughput [Kops/s]

512 B

4096 B

Figure 5: We emulate different configurations with 15 nodes
to quantify the expected benefits of hardware accelerators
and protocol optimizations. The results show that the avoid-
ance of PK cryptography is the most important performance
factor.

systems the ordering service does not actually look at the contents

of “transactions”. And even if some processing of these transactions

would be necessary, it can be performed off the critical path. This

choice, however, introduces a question related to state compaction.

While in state machine replication this can happen implicitly at

specific intervals on all nodes (e.g., after each successful checkpoint),

in a scenario we are looking at, compaction can only be done from

the “outside” when all clients can agree. In ModuBFT we keep

a log of 10k operations in memory that acts as a circular buffer

and we have set the checkpointing frequency to 500 messages to

make most of the frequently accessed data structures fit in cache.

In a full implementation, the log would have to be written to disk

asynchronously for durability, and a suitable compaction method

would have to be chosen.

Similarly, there is a decision to be had in the system whether the

blockchain entries can be gossiped or not by the clients. If gossip is

not used (our default assumption), it is sufficient to use MACs to

authenticate messages between ordering nodes and clients and for

each new client to read blocks directly from the ordering service

when recovering state. If gossip is used, the nodes need to sign

client responses with a PK signature. ModuBFT offers both options

and the signatures can be enabled with an environment variable.

Incoming messages from clients are by default using private-key

signatures, even if the answers are only signed with MACs. This is

to protect against malicious clients (so called big-MAC attack [21]).

5 STUDY OF PROTOCOL VARIANTS
All experiments are performed on a consensus group of 15 nodes,

with the clients issuing either requests with 512 B or 4096 B values.

We chose these two sizes close to the average size of a Bitcoin trans-

action [2] and more general smart contracts reported in Fabric [11].

We do not use batching, unless otherwise stated, because with new

latency-focused designs for permissioned blockchains [10, 28, 38]

C
li
en
tR
eq
.

P
re
P
re
p
ar
e

P
re
p
ar
e

C
o
m
m
it

C
li
en
tR
es
p
.

0

200

400

600

T
o
t
a
l
C
P
U
c
y
c
l
e
s
(
t
h
o
u
s
a
n
d
s
)

Marshal

Sign/MAC

Hash (TX)

Decide

Verify

Hash (RX)

Unmarshal

Figure 6: The aggregate cost of each pipeline stage in a
domain-optimized setup (in CPU cycles) at the leader for
15 nodes, processing 4KB values, shows that (un)marshaling
and hashing before verification are the most expensive.

and the increasingly fast networking in cloud environments, we

believe it is important to investigate the protocol without compro-

mising its latency.

Unless otherwise stated, the unit for throughput is consensus

rounds (operations) per second, which, depending on how the per-

missioned blockchain system on top would utilize the BFT nodes,

can translate to the same number of blockchain transactions per

second or more (if logical batching inside a single value is used).

The theoretical maximum throughput, excluding TCP/IP overhead

and without batching, over 10Gbps network is just above 80 Kops/s

for 512 B and 19Kops/s for 4096 B values.

We perform our evaluation on a 10Gbps cluster of 24 machines

with 6 core Intel Xeon E-2186G CPUs, running Debian linux and

Go v1.10. Naturally, permissioned blockchains will not be deployed

in such a “single cluster” fashion but we use this setup as an ap-

proximation for future single and multi-cloud deployments where

the underlying infrastructure has been purposefully optimized for

the application at hand.

5.1 What is the performance of off-the-shelf
protocols on fast networks?

In Figure 5 we show the throughput of ModuBFT when configured

to act as an “off-the-shelf” BFT variant, using public-key (PK) cryp-

tography for signing all messages. The numbers are low (less than

800 ops/s) due to the high computational cost of creating signa-

tures, even though the system uses all cores of the machine. In this

scenario, any method of accelerating the crypto operations will be

beneficial. In our example, using a faster module for cryptographic

operations (“+Acc”) leads to 4X increase in throughput.

5.2 How much can be gained by using MACs
instead of signatures?

The second class of BFT deployments replace PK signatures on inter-

node traffic with MACs [18] that are orders of magnitude cheaper to

An Experimental Framework for Improving the Performance of BFT Consensus For Future Permissioned Blockchains DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

3 5 7 9 11 13 15

0

10

20

30

40

50

Number of nodes

T
h
r
o
u
g
h
p
u
t
[
K
o
p
s
/
s
]

V=512

V=4096

V=8192

Figure 7: Increasing the number of nodes has a predictable
impact on throughput. The leader node becomes bound on
its network stack for larger group sizes.

compute than signatures. The throughput of the system increases

to more than 2.6 Kops/s and is, in fact, on par with the PK-Only

version with acceleration. Since the nodes still spend significant

resources on signing responses to clients with a PK, adding crypto

acceleration is beneficial. It brings, however, a smaller benefit than

in the previous case, that is, around 2.5X vs. 4X. Even though in

this experiment we do not consider batching, it is worth pointing

out that, for the off-the-shelf version with batching at the leader,

the MAC-based version behaves as an upper bound of throughput.

To achieve similar throughput levels with a version that signs all

protocol messages with a PK, hundreds of requests would have to

be batched to amortize the signing cost. This, in turn, will impact

latencies significantly.

5.3 How much can be gained by optimizing to
the domain of permissioned blockchains?

If nodes use MACs both between themselves and to answer to

clients, performance increases significantly, even when those rely

on acceleration, there is almost a 2X difference in throughput for

small values. Using the domain-optimized version and issuing large

4096 B values, it is possible to achieve more than 60% of the theoret-

ical maximum throughput without relying on any type of batching.

For smaller, 512 B values, only 25% of the maximum is reached.

It has to be noted that for completeness, signatures have to be

computed periodically (e.g. at checkpoints) on the data to allow

for recovery at a coarser granularity, as well as to allow clients to

exchange “blocks” among themselves.

5.4 What operations are costly beyond
signatures?

To understand the reason why crypto acceleration provides dimin-

ishing results in the domain-optimized case, we show a breakdown

of compute costs for each message type in the leader of a group of

15 in Figure 6 (we ignore parallelism here and compute the aggre-

gate time spent on each part). Thanks to the MAC optimization, the

biggest cost in handling requests is the time it takes to (un)marshal

them and to compute their SHA256 hash for verification. With

larger consensus groups, the relative cost of these operations will

increase further as there will be more messages sent between nodes.

0 5 10 15 20

0

1

2

3

4

Throughput [Kops/s]

R
e
s
p
o
n
s
e
t
i
m
e
[
m
s
]

P=15 V=4096

P=15 V=512

P=7 V=4096

P=7 V=512

Figure 8: Even under load ModuBFT delivers response times
that increase predictably. For small values it is possible to
keep response times under 2ms even when fully saturated.

When using smaller values, the cost of hashing is reduced linearly,

but the cost of (un)marshaling is not reduced significantly. Hence,

for simplicity we omit other data sizes from this discussion. If we

compare these costs with an implementation that signs client re-

sponses with RSA2048, this would increase the signing cost to the

order of 4.5m cycles (around 1.2ms on our CPUs). This illustrates

why avoiding its computation on client responses lead to speedup

seen in Figure 5 (PK-Only vs. MACs).

5.5 Additional Evaluation of ModuBFT
In this subsection we look atModuBFT implementation as a domain-

optimized BFT consensus service with reconfiguration and measure

its performance in a cluster to show that it achieves low latency

and high throughput even without hardware acceleration, making

it a realistic starting point for implementing such functionality.

In Figure 7 we measure the throughput of ModuBFT with in-

creasing consensus group sizes. The behavior is in line with the

expectations of a leader-based protocol. For 15 nodes, the system de-

livers more than 17 Kops/s for the smallest value size and 10 Kops/s

respectively 5 Kops/s for the 4 and 8 KB value sizes. The expectation

is to scale to larger groups without issues, with a linear decrease

in performance. The demonstrated throughput numbers are high

enough to ensure that integration of ModuBFT with blockchains

such as Hyperledger Fabric [11] is possible without becoming an

immediate bottleneck.

With the deployment of permissioned ledgers in environments

with high network bandwidth and low latency, it is important that

the underlying BFT consensus can be performedwith low latency as

well. As shown in Figure 8, the average response time of ModuBFT

starts from the sub-millisecond range for small values and increases

slowly with load. Even close to saturation, the response time is only

factor of three larger then in the unloaded case. While it is not

our focus to compare to BFT-Smart since ModuBFT is meant as a

platform for future exploration, not as a production-ready solution,

it is worth pointing out that the latency stays under 3.5ms at all

times, which is the lowest measured in Figure 1.

Overall, low and predictable latency that does not increase signif-

icantly with load is important because it ensures that the consensus

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy Man-Kit Sit, Manuel Bravo, and Zsolt István

1 4 8 16

0

2

4

6

8

10

33Kops/s

11.5Kops/s

7.6Kops/s

Batching at leader

G
o
o
d
p
u
t
a
t
l
e
a
d
e
r
[
G
b
p
s
]

V=8192

V=4096

V=512

Figure 9: ModuBFT takes advantage of the 10Gbps bandwidth
available at the leader, but to achieve an almost complete
utilization of it some amount of batching is necessary.

nodes will not be the latency bottleneck. Even though most per-

missioned blockchains today do not optimize for latency at the

millisecond level, as we discuss in the Related Work section, there

are emerging blockchain designs, e.g. [10, 38], that could readily

benefit from lower latency consensus.

6 ACCELERATION STRATEGIES AND
INSIGHTS

Related works have shown that replacing PK signatures with MACs

can improve performance but the improvements are seldom quanti-

fied. In this work, by measuring the difference in the same system,

we reach a counter-intuitive insight: when adding crypto accel-

eration to the most optimized version, the performance gains are

only marginal because client signatures can be verified in parallel,

and block signatures can be computed on the side of normal op-

eration. As the cost drill-down shows, for the domain-optimized

case, the more significant opportunities are in acceleration of data

movement and hashing. These will provide a bigger benefit than

focusing solely on crypto accelerators. In the remaining we discuss

two promising acceleration strategies to help reach 10Gbps line-rate

performance and beyond. In preparation for their implementation,

we present micro-benchmarks further motivating them and discuss

their main benefits and challenges.

6.1 Strategy: Offload Marshaling to SmartNICs
Figure 6 shows that (un)marshaling and hashing costs account

for a significant portion of the runtime even if we don’t factor

in signature verification. Today, there is an emerging offering of

SmartNICs [25, 26, 57] that, in the future, could be used to offload

some of these operations, e.g., serialization of messages and line-

rate hashing. Furthermore, there are recent related works that use

Mellanox NICs to offload TLS [46], which could be used as an

equivalent of MACs.

The main question that arises when proposing the use of such

SmartNICs is whether to treat them a) as a “stateless” accelerator
that can, for instance, parse packets but does not access application

state, or b) as a “stateful” one that can in addition also clone and

send messages to different peers depending on the application state.

The first case already allows one to offload hashing and parsing,

as well as, marshaling to the device, but to estimate the benefits of

exposingmore of the protocol’s state to the NIC, we need to evaluate

0 1 2 3 4 5 6 7 8

0

0.25

0.5

0.75

1

Latency [ms]

C
D
F

Low load (1k ops/s)

High load (11k ops/s)

Figure 10: ModuBFT implementation highlights additional
opportunities for HW: reducing the long tail of response
times under load (15 nodes and 4KB payload)

how efficient the current software version is when interfacing with

the network. To this end, we plot in Figure 9 the useful bandwidth

usage at the leader (goodput) with an increasing batching factor.

Batching is implemented in the leader node by waiting for multiple

messages from clients, assembling them into a vector and issuing a

single PRE_PREPAREmessage for them. If there would be no TCP/IP

and Ethernet overhead, it would be possible to achieve at most

10Gbps goodput in our setup, but in reality, even for very large

packets the limit is lower. The results show that without batching,

it reaches up to 6Gbps goodput for large values (4 and 8KB) and

around 2Gbps for small ones (512 B). Moderate batching of 4 to

8 requests can result in a better TCP stack utilization and at the

leader goodput can reach more than 7Gbps for large requests and

4Gbps for small ones. The increase in bandwidth use comes at the

cost of higher response times, though with such small batching

factors, the differences remain small.

Based on this result, we foresee that for network speeds beyond

10Gbps, SmartNICs will be a sensible acceleration option. They will

have to offload parts of the packet-processing operations and rely

on fine-grained batching with strict latency guarantees that would

be unfeasible to achieve in software. For achieving the best results,

however, all participants of the BFT consensus will have to use

a similar SmartNIC accelerator; otherwise stragglers could slow

the whole system down. With the rapid adoption of FPGAs in the

datacenter, such as in Microsoft Catapult NICs [26], it is realistic to

assume that with the right resource allocation, all BFT nodes could

benefit from hardware acceleration.

6.2 Strategy: Run PBFT on Standalone FPGAs
Various types of hardware accelerators have been recently used

to accelerate CFT consensus [23, 37, 39, 47, 56]. These solutions

demonstrate latencies in the order of microseconds and are able to

saturate the network regardless of the value sizes, thanks to the

reduced overhead of the network stack and the low cost of data

movement between network interface and the decision logic. They

also bring predictable response time behavior which enables them

to fulfill strict SLAs in low latency environments. If we investigate

the distribution of response times and the variance at the tail of

our software prototype, we see a significant increase in the high

percentiles of response times, even if the median does not shift

by much (Figure 10). In deployments where low and predictable

An Experimental Framework for Improving the Performance of BFT Consensus For Future Permissioned Blockchains DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

7 16 25 34 43

0

100

200

xc7vx690t

Smallest targeted group size

L
o
g
i
c
s
l
i
c
e
s
(
t
h
o
u
s
a
n
d
s
)

V=512 All logic

V=512 Just RSA

V=4096 All logic

V=4096 Just RSA

Figure 11: Estimated resource consumption of a 10Gbps PBFT
implementation on FPGAs using open-source components
targeting a minimum value size and group size.

response times are important at all load levels, standalone FPGA-

based implementations could be beneficial because there are less

factors influencing response times.

Even though hardware-based solutions provide microsecond la-

tencies and high throughput, one challenge in this space has been

the feasibility of handling not only the failure-free case but imple-

menting reconfiguration as well. There is prior work, e.g. [37], that

demonstrates that it is possible to implement reconfiguration for

an atomic broadcast protocol on FPGAs and, in terms of communi-

cation patterns and metadata structures, PBFT is not significantly

more complex. However, there is a significant difference between

BFT and CFT algorithms in that the former requires the computa-

tion and verification of cryptographic hashes and signatures. This

additional requirement, in particular RSA, make implementation

challenging on FPGAs. This is because RSA (and similar ciphers)

require iterative computation that is, on the one hand, resource in-

tensive and, on the other hand, suffers from the relatively low clock

rates of FPGAs. Therefore, from the three BFT variants discussed in

this paper, only the domain-optimized version is feasible on FPGAs

because it minimizes the need for cryptographic operations, i.e.,

the rate of RSA ops/s.

To verify this claim, we rely on open source cores to estimate the

cost of an implementation. By computing the maximum 10Gbps

client-facing throughput at the leader as a function of minimum

consensus group size and minimum value size, we can estimate

how many resources RSA-related computations would take up on

the FPGA. We use the RSA core from the Xilinx Vitis Library [7] as

a representative instance and replicate it as many times as needed

to match the desired throughput level. In Figure 11 we show with

dashed lines how the cost of RSA computations decreases as the

minimum group size increases. This is because the leader will send

increasingly more intra-node messages than to/from clients.

To estimate the total cost of a complete 10Gbps BFT implemen-

tation in terms of logic resources, we synthesized a 10Gbps TCP/IP

module with DRAM controller [6], SHA256 hashing cores [5], and

AES [7] cores. For an estimate of the decision logic we relied on the

CFT Atomic Broadcast module in Caribou [3]. The resource cost of

these modules was added to the cost of RSA cores (sum shown as

solid lines).

To put the logic resource numbers in perspective, we show the

capacity of a mid-range FPGA
4
with the horizontal line. This FPGA

is similar in size to the FPGA used on the popular NetFPGA SUME

board
5
and around 4 times smaller than the FPGA on the new

Xilinx Alveo boards
6
and the Amazon F1 instances. Overall, the

resource estimates in Figure 11 paint an encouraging picture: ex-

cept for when using small groups or very small average value size,

even a mid-range FPGA could implement PBFT at 10Gpbs line-

rate. Furthermore, given the higher end FPGAs on the market, we

are confident that it is realistic to implement in the future BFT on

stand-alone nodes.

7 RELATEDWORK
7.1 Performance Studies
A body of previous work studies the performance of consensus

protocols. A subset of these efforts focused on the performance of

major permissioned blockchains. In recent work by Dinh et al. [24],

the authors measure the performance of Ethereum, Hyperledger

Fabric and Parity under a variety of applications. Their results

highlight bottlenecks in all of them, either related to the consensus

protocol or the cryptographic operations. In other recent work,

Thakkar et al. [54] study the horizontal and vertical scalability of

Hyperledger Fabric. They conclude that Hyperledger Fabric scales

poorly: when scaling vertically, there is an under-utilization of

the CPUs, when scaling horizontally, the allocated resources are

wasted due to redundant work. These results are in-line with our

findings. Nevertheless, in contrast to these studies, we analyze the

performance of BFT consensus protocols in isolation, independent

of specific blockchain platforms. This allows us to conduct an in-

depth study of the costs associated to different parts of the protocol

and to identify precisely which parts of the protocol are more likely

to bottleneck and which parts prevent the protocol from taking

advantage of modern hardware.

Another recent work is Odyssey [27], in which the authors

present a framework that allows fair comparison among consensus

protocols in today’s modern hardware and RDMA-capable net-

work. Our work shares a similar motivation. Nevertheless, Odyssey

focuses on CFT consensus protocols such as ZAB [36] and Multi-

Paxos [45], while we focus on BFT consensus (and on commodity

Ethernet networks with TCP/IP as communication protocol).

In work describing the lessons learned building Resilient DB,

Gupta et al. [35] conduct a detailed study to understand and high-

light different factors that affect the performance of a PBFT-like

consensus protocol. Its main observation is that batching and out-

of-order processing can result on significant throughput gains. In

contrast to our work, they focus on this protocol in the context of

ResilientDB, an experimental permissioned blockchain, and do not

look into how such BFT protocols can take advantage of specialized

hardware.

7.2 Protocol Variants and Optimizations
There is related work on implementing traditional BFT protocols in

such a way that benefits from the multi-core parallelism of modern

4
Xilinx xc7vx690t: 108k Logic Slices, 3600 DSPs and 1470 BRAMs.

5
https://reference.digilentinc.com/programmable-logic/netfpga-sume/start

6
https://www.xilinx.com/products/boards-and-kits/alveo.html

https://reference.digilentinc.com/programmable-logic/netfpga-sume/start
https://www.xilinx.com/products/boards-and-kits/alveo.html

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy Man-Kit Sit, Manuel Bravo, and Zsolt István

CPUs. A representative example is BFT-Smart [14]. The pipelined

implementation demonstrates good performance on Gigabit net-

works. The way in which reconfiguration is performed is similar

to the one we propose in ModuBFT but the nodes have to do more

complex operations to perform state transfer. We chose not to use

BFT-Smart as the framework for this study because it has implicit

design choices related to, for instance, signatures, that would have

made it difficult to “simulate” different BFT variants. The results of

this work, nonetheless, apply to systems such as BFT-Smart.

With the advent of blockchain technologies, there is an increas-

ing interest in optimizing PBFT. SBFT [30], for instance, aims to

reduce communication complexity by relying on an so called “col-

lector” node and threshold signatures, and adding a fast path to

the execution (similar to Zyzzyva [43]). SBFT targets wide area

networks and trades off bandwidth for more compute-intensive

operations. As we shown in this work, however, in fast networking

deployments there is plenty of bandwidth and relying on private-

key cryptography as the default leads to sub-optimal use of the

network resources. Other examples are [33, 52] that optimize PBFT

for geo-replication.

Other recent work, such as HotStuff [58], explores how view-

changes can be made cheaper. It targets permissioned blockchains

that experience a high amount of failures or churn among the con-

sensus nodes and, as a result, will require frequent view changes.

The authors reduce the cost of these operations by adding an extra

communication phase to each consensus round. In this work we as-

sume business-to-business use-case of permissioned ledgers where,

even though the clients of the system can be subject to churn, the

core consensus nodes rarely change. In this setting optimizing for

failure-free behavior is more beneficial. Nonetheless, our findings

will apply to solutions such as HotStuff, as long as they are being

executed in low latency environments.

The performance of PBFT-inspired protocols, including Mod-

uBFT, is limited by the leader as consensus groups grow. There is

emerging work [32, 53] that aims to solve the leader bottleneck

without fundamentally changing the underlying protocol and in-

stead relying on deterministic scheduling and data sharding that fits

the permissioned ledger use-case well. For instance, Mir-BFT [53]

achieves a near-linear increase in throughput with each node added

to the consensus group and is competitive even when compared to

ring replication in terms of bandwidth usage. Our findings are di-

rectly applicable to solutions such as Mir-BFT, since its multi-leader

approach is orthogonal to the choice of underlying BFT protocol.

7.3 Consensus and Specialized Hardware
Various types of hardware accelerators have been used to accelerate

CFT consensus algorithms [23, 37, 47, 56] and they demonstrate

latencies in the tens of microseconds and are able to saturate the

network regardless of the value sizes. This is thanks to reducing

the overhead of the network stack and the data movement between

network interface and the decision logic. We believe that there is an

emerging opportunity in exploring how these ideas can translate

to BFT consensus.

Other related work uses specialized hardware to implement

trusted computing elements and through this simplify the typi-

cal three-round operation of BFT to two rounds [13, 22, 40] and

reduce the number of necessary replicas to 2𝑓 +1. These approaches
show promising result and, given that the trusted computing el-

ement does not become a performance bottleneck, could be well

suited to fast networks.

8 CONCLUSION
In this work we deconstructed a BFT consensus protocol with

the goal of forecasting the benefits of various acceleration strate-

gies. Our work is motivated by the emergence of permissioned

blockchain use-cases that can be ran in environments with high

bandwidth networking and low latencies and should be able, in the

future, to take advantage of a wide range of acceleration options.

Based on our study, comparing different BFT consensus variants, we

concluded that the key to achieving low latency and high through-

put behavior is more complex than just offloading cryptographic

operations and instead will require a clever combination of improve-

ments to multiple steps of the processing pipeline. This finding is a

catalyst for research into hybrid solutions, that combine software

and hardware in surprising ways.

ACKNOWLEDGMENTS
Manuel Bravo has been partially funded by the Spanish Research

Council, through the Juan de la Cierva Formación funding scheme

(FJC2018-036528-I). Zsolt István has been partially funded by a

Marie Curie Individual Fellowship (EU Project 842956) and a Span-

ish National Research Grant (PGC2018-102210-B-I00).

REFERENCES
[1] Amazon managed blockchain. https://aws.amazon.com/managed-blockchain/.

[2] Bitcoin transaction size visualization. https://bitcoinvisuals.com/chain-tx-size.

[3] Caribou: Distributed smart storage built with FPGAs. https://github.com/

fpgasystems/caribou.

[4] Ibm blockchain platform. https://www.ibm.com/blockchain/platform.

[5] Open source SHA256 implementation. https://github.com/secworks/sha256.

[6] Scalable network stack supporting TCP/IP, RoCEv2, UDP/IP at 10-100Gbit/s.

https://github.com/fpgasystems/fpga-network-stack.

[7] Vitis security library, xilinx. https://xilinx.github.io/Vitis_Libraries/security/

index.html.

[8] Zotech FPGA-based RSA accelerator. https://github.com/ZoTechGroup/zt_rsa.

[9] Alastria network report 2019. https://alastria.io/wp-

content/uploads/2019/04/2019-04-23_Alastria-Corporate-

presentation_v00.08.pdf, 2019.

[10] Amiri, M. J., Agrawal, D., and Abbadi, A. E. Caper: a cross-application permis-

sioned blockchain. Proceedings of the VLDB Endowment 12, 11 (2019), 1385–1398.
[11] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K.,

De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.

Hyperledger fabric: a distributed operating system for permissioned blockchains.

In Proceedings of the Thirteenth EuroSys Conference (2018), ACM, p. 30.

[12] Azaria, A., Ekblaw, A., Vieira, T., and Lippman, A. Medrec: Using blockchain

for medical data access and permission management. In 2016 2nd International
Conference on Open and Big Data (OBD) (2016), IEEE, pp. 25–30.

[13] Behl, J., Distler, T., and Kapitza, R. Hybrids on steroids: Sgx-based high

performance bft. In Proceedings of the Twelfth European Conference on Computer
Systems (2017), ACM, pp. 222–237.

[14] Bessani, A., Sousa, J., and Alchieri, E. E. State machine replication for the

masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (2014), IEEE, pp. 355–362.

[15] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,

Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., et al. P4: Programming

protocol-independent packet processors. ACM SIGCOMM Computer Communi-
cation Review 44, 3 (2014), 87–95.

[16] Brown, R. G., Carlyle, J., Grigg, I., and Hearn, M. Corda: an introduction. R3
CEV, August 1 (2016), 15.

[17] Buehler, K., Chiarella, D., Heidegger, H., Lemerle, M., Lal, A., and Moon, J.

Beyond the hype: Blockchains in capital markets. Tech. rep., McKinsey Working

Papers on Corporate & Investment Banking, 2015.

https://github.com/fpgasystems/caribou
https://github.com/fpgasystems/caribou
https://github.com/secworks/sha256
https://github.com/fpgasystems/fpga-network-stack
https://xilinx.github.io/Vitis_Libraries/security/index.html
https://xilinx.github.io/Vitis_Libraries/security/index.html
https://github.com/ZoTechGroup/zt_rsa

An Experimental Framework for Improving the Performance of BFT Consensus For Future Permissioned Blockchains DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

[18] Castro, M., and Liskov, B. Practical byzantine fault tolerance and proactive

recovery. ACM Transactions on Computer Systems (TOCS) 20, 4 (2002), 398–461.
[19] Castro, M., Liskov, B., et al. Practical byzantine fault tolerance. In OSDI (1999),

vol. 99, pp. 173–186.

[20] Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., and Riche,

T. Upright cluster services. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles (2009), ACM, pp. 277–290.

[21] Clement, A., Marchetti, M., Wong, E., Alvisi, L., and Dahlin, M. Bft: the time

is now. In Proceedings of the 2nd Workshop on Large-Scale Distributed Systems
and Middleware (2008), ACM, p. 13.

[22] Dang, H., Dinh, T. T. A., Loghin, D., Chang, E.-C., Lin, Q., and Ooi, B. C. To-

wards scaling blockchain systems via sharding. In SIGMOD ’19 (2019), p. 123–140.
[23] Dang, H. T., Bressana, P., Wang, H., Lee, K. S., Weatherspoon, H., Canini,

M., Zilberman, N., Pedone, F., and Soulé, R. P4xos: Consensus as a net-

work service. Tech. rep., Research Report 2018-01. USI. http://www. inf. usi.

ch/research_publication. htm, 2018.

[24] Dinh, T. T. A., Wang, J., Chen, G., Liu, R., Ooi, B. C., and Tan, K.-L. Blockbench:

A framework for analyzing private blockchains. SIGMOD ’17, p. 1085–1100.

[25] Eran, H., Zeno, L., Tork, M., Malka, G., and Silberstein, M. {NICA}: An
infrastructure for inline acceleration of network applications. In 2019 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 19) (2019), pp. 345–362.

[26] Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha,

M., Angepat, H., Bhanu, V., Caulfield, A., Chung, E., et al. Azure accelerated

networking: Smartnics in the public cloud. In 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18) (2018), pp. 51–66.

[27] Gavrielatos, V., Katsarakis, A., and Nagarajan, V. Odyssey: The impact of

modern hardware on strongly-consistent replication protocols. In EuroSys ’21
(2021), p. 245–260.

[28] Gorenflo, C., Lee, S., Golab, L., and Keshav, S. FastFabric: Scaling Hyperledger

Fabric to 20,000 transactions per second. In IEEE ICBC (2019).

[29] Gramoli, V. From blockchain consensus back to byzantine consensus. Future
Generation Computer Systems (2017).

[30] Gueta, G. G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B., Reiter, M.,

Seredinschi, D.-A., Tamir, O., and Tomescu, A. Sbft: a scalable and decentralized

trust infrastructure. In 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) (2019), IEEE, pp. 568–580.

[31] Güneysu, T., and Paar, C. Ultra high performance ecc over nist primes on

commercial fpgas. In International Workshop on Cryptographic Hardware and
Embedded Systems (2008), Springer, pp. 62–78.

[32] Gupta, S., Hellings, J., and Sadoghi, M. Scaling blockchain databases through

parallel resilient consensus paradigm. In ICDE ’21 (2021).
[33] Gupta, S., Rahnama, S., Hellings, J., and Sadoghi, M. Resilientdb: Global scale

resilient blockchain fabric. Proc. VLDB Endow. 13, 6 (2020), 868–883.
[34] Gupta, S., Rahnama, S., Hellings, J., and Sadoghi, M. Resilientdb: Global scale

resilient blockchain fabric. Proc. VLDB Endow. 13, 6 (2020), 868–883.
[35] Gupta, S., Rahnama, S., and Sadoghi, M. Permissioned blockchain through the

looking glass: Architectural and implementation lessons learned. In ICDCS ’20
(2020), pp. 754–764.

[36] Hunt, P., Konar, M., Junqeira, F. P., and Reed, B. Zookeeper: Wait-free

coordination for internet-scale systems. In USENIX ATC ’10 (2010).
[37] István, Z., Sidler, D., Alonso, G., and Vukolic, M. Consensus in a box: Inex-

pensive coordination in hardware. In 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16) (2016), pp. 425–438.

[38] István, Z., Sorniotti, A., and Vukolić, M. Streamchain: Do blockchains need

blocks? In Proceedings of the 2ndWorkshop on Scalable and Resilient Infrastructures

for Distributed Ledgers (2018), ACM, pp. 1–6.

[39] Jin, X., Li, X., Zhang, H., Foster, N., Lee, J., Soulé, R., Kim, C., and Stoica,

I. Netchain: Scale-free sub-rtt coordination. In 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18) (2018), pp. 35–49.

[40] Kapitza, R., Behl, J., Cachin, C., Distler, T., Kuhnle, S., Mohammadi, S. V.,

Schröder-Preikschat, W., and Stengel, K. Cheapbft: resource-efficient byzan-

tine fault tolerance. In Proceedings of the 7th ACM european conference on Com-
puter Systems (2012), ACM, pp. 295–308.

[41] Knežević, M., Nikov, V., and Rombouts, P. Low-latency ecdsa signature verifica-

tion—a road toward safer traffic. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 24, 11 (2016), 3257–3267.

[42] Korpela, K., Hallikas, J., and Dahlberg, T. Digital supply chain transformation

toward blockchain integration. In proceedings of the 50th Hawaii international
conference on system sciences (2017).

[43] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E. Zyzzyva: specula-

tive byzantine fault tolerance. In ACM SIGOPS Operating Systems Review (2007),

vol. 41, ACM, pp. 45–58.

[44] Kwon, J. Tendermint: Consensus without mining. Draft v. 0.6, fall 1, 11 (2014).
[45] Lamport, L. Paxos made simple. ACM SIGACT News 32, 4 (2001), 51–58.
[46] Pismenny, B., Lesokhin, I., Liss, L., and Eran, H. Tls offload to network devices,

2016.

[47] Poke, M., and Hoefler, T. Dare: High-performance state machine replication

on rdma networks. In Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing (2015), ACM, pp. 107–118.

[48] Ruiz, J. Public-permissioned blockchains as common-pool resources (alastria

blockchain ecosystem), 2020.

[49] Russinovich, M., Ashton, E., Avanessians, C., Castro, M., Chamayou, A.,

Clebsch, S., Costa, M., Fournet, C., Kerner, M., Krishna, S., Maffre, J.,

Moscibroda, T., Nayak, K., Ohrimenko, O., Schuster, F., Schuster, R., Shamis,

A., Vrousgou, O., and Wintersteiger, C. Ccf: A framework for building

confidential verifiable replicated services.

[50] Santos, N., and Schiper, A. Achieving high-throughput state machine repli-

cation in multi-core systems. In 2013 IEEE 33rd International Conference on
Distributed Computing Systems (2013), Ieee, pp. 266–275.

[51] Sharma, A., Schuhknecht, F. M., Agrawal, D., and Dittrich, J. Blurring the

lines between blockchains and database systems: the case of hyperledger fabric.

In SIGMOD’19 (2019), ACM.

[52] Sousa, J., and Bessani, A. Separating the wheat from the chaff: An empirical

design for geo-replicated state machines. In SRDS ’15 (2015), pp. 146–155.
[53] Stathakopoulou, C., David, T., and Vukolić, M. Mir-bft: High-throughput bft

for blockchains. arXiv preprint arXiv:1906.05552 (2019).
[54] Thakkar, P., and Nathan, S. Scaling hyperledger fabric using pipelined execu-

tion and sparse peers. arXiv, March 2020. https://arxiv.org/abs/2003.05113.
[55] Vukolić, M. The quest for scalable blockchain fabric: Proof-of-work vs. bft

replication. In International workshop on open problems in network security (2015),

Springer, pp. 112–125.

[56] Wang, C., Jiang, J., Chen, X., Yi, N., and Cui, H. Apus: Fast and scalable paxos

on rdma. In Proceedings of the 2017 Symposium on Cloud Computing (2017), ACM,

pp. 94–107.

[57] Williams, B., Aguirre Esparza, L., Poole, W., and Poole, S. Exploring mellanox

bluefield smartnics as accelerators for heterogeneous architectures. Tech. rep.,

Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2019.

[58] Yin, M., Malkhi, D., Reiter, M. K., Gueta, G. G., and Abraham, I. Hotstuff:

Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing (2019), ACM, pp. 347–356.

https://arxiv.org/abs/2003.05113

	Abstract
	1 Introduction
	2 Motivation
	2.1 Use-cases
	2.2 State-of-the-art BFT Consensus and Fast Networks

	3 Background
	3.1 Permissioned Blockchains
	3.2 PBFT

	4 ModuBFT: Experimental Framework
	4.1 Protocol Configurations Used
	4.2 Pipelined Execution
	4.3 Implementation Decisions and Accelerator Simulation

	5 Study of Protocol Variants
	5.1 What is the performance of off-the-shelf protocols on fast networks?
	5.2 How much can be gained by using MACs instead of signatures?
	5.3 How much can be gained by optimizing to the domain of permissioned blockchains?
	5.4 What operations are costly beyond signatures?
	5.5 Additional Evaluation of ModuBFT

	6 Acceleration Strategies and Insights
	6.1 Strategy: Offload Marshaling to SmartNICs
	6.2 Strategy: Run PBFT on Standalone FPGAs

	7 Related Work
	7.1 Performance Studies
	7.2 Protocol Variants and Optimizations
	7.3 Consensus and Specialized Hardware

	8 Conclusion
	References

