
doppioDB: A Hardware Accelerated Database

David Sidler, Zsolt István, Muhsen Owaida, Kaan Kara, and Gustavo Alonso
Systems Group, Dept. of Computer Science

ETH Zürich, Switzerland

{firstname.lastname}@inf.ethz.ch

ABSTRACT
Relational databases provide a wealth of functionality to a
wide range of applications. Yet, there are tasks for which
they are less than optimal, for instance when processing be-
comes more complex (e.g., matching regular expressions) or
the data is less structured (e.g., text or long strings). In
this demonstration we show the benefit of using specialized
hardware for such tasks, and highlight the importance of a
flexible, reusable mechanism for extending database engines
with hardware-based operators.

As an example, we extend MonetDB, a main-memory col-
umn store, with a Hardware User Defined Function (HUDF)
to provide seamless acceleration of two string operators,
LIKE and REGEXP_LIKE, and two analytics operators, SKY-

LINE and SGD (stochastic gradient descent).
We evaluate our idea on an emerging hybrid multicore

architecture, the Intel’s Xeon+FPGA platform, where the
CPU and FPGA have cache-coherent access to the same
memory and the hardware operators can directly access the
tables. For integration we rely on Hardware UDFs (HUDF),
as a unit of scheduling and management on the FPGA. In
the demonstration we show the acceleration benefits of hard-
ware operators, but also their flexibility in accommodating
changing workloads.

1. INTRODUCTION AND MOTIVATION
Relational engines exhibit great performance for a wide

range of tasks. There are, however, well known operations
and data types that cause problems. One of these data types
is character strings which are both unstructured and expen-
sive to process for anything but the simplest forms of pattern
matching.

Most databases implement the SQL LIKE operator which
can match multiple substrings divided by a wildcard ’%’.
For more complex string matching, some engines provide a
vendor-specific regular expression operator, e.g. REGEXP_LIKE.
In contrast to the string matching with a LIKE operator,
regular expression evaluation is significantly more compute-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2017 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

intensive, resulting easily in a performance difference of an
order of magnitude between the two operators.

With the increasing amount of user-generated data stored
in relational databases. There is not only the need to an-
alyze unstructured text data, but general analytical opera-
tions in the context of machine learning become gradually
more important to extract useful information from the waste
amount of data collected. Many of these analytical opera-
tions incur a significant compute complexity not suitable to
database engines where multiple queries share the available
resources.

One way to address this trend is to use accelerators such
as Xeon-Phi, GPUs, or FPGAs. Such approaches will of-
ten promise orders of magnitude performance improvements,
however in many cases the integration into a real system
voids these improvements because 1) the data needs to be re-
formatted to the execution model of the accelerator (GPUs,
SIMD on Xeon Phi) and 2) the data needs to be partitioned
between the host and accelerator memory. Indeed the inte-
gration into the database and addressing challenges related
to data consistency and management is still an open prob-
lem.

Hybrid multicore architectures, such as Intel’s Xeon+FPGA
platform [1] and IBM’s CAPI for Power8 [4], try to address
these limitations. In these architectures, the accelerator is
treated as another processor in the system and has direct ac-
cess to shared memory. This architecture has the potential
of removing both the data-reformatting and -partition over-
head. In our work we take advantage of this tight coupling
and implement Hardware User Defined Functions (HUDFs)
which can access data in the database without explicitly
moving data to and from the accelerator. By implementing
the UDF interface the HUDF becomes just another opera-
tor from the point of the database engine and hides all the
complexity of interacting with the hardware accelerator.

In this work we demonstrate the integration of multi-
ple FPGA-based hardware operators, regular expression [3],
skyline [5], and stochastic gradient descent, into MonetDB
as explained in [3]. The hardware operators are fully runtime
parameterizable, i.e., the chip does not need to be repro-
grammed for executing new queries using the same operator.
Thanks to their integration into MonetDB as HUDFs, they
can be used seamlessly in queries. As we will demonstrate,
our FPGA-based operators achieve at least 2-3x speed up
over software running on a 10-core CPU, reaching more than
an order of magnitude improvement in many cases.



MonetDB

UDF Regex
Eng 1

Regex
Eng 2

Skyline
Eng 1

SGD
Eng 1

AAL AAL

Job
Dist.

HAL HALUser
Query

MonetDB
BATs

Result
BATs

Job
Queues

Parameters

Status

1

2
3

3 5 4 4

6

6

7

8

9CPU

Shared Memory

FPGA

Figure 1: Overview of the system, the numbers show the
steps of executing a regular expression query on the FPGA

2. SYSTEM OVERVIEW
The system used in the demonstration is described in [3].

As shown in Figure 1, it consists of three main parts: 1)
MonetDB extended with our Hardware User Defined Func-
tion (HUDF), 2) the Hardware Operator Abstraction Layer
(HAL) provides a simple software API to execute jobs on the
FPGA and 3) four hardware engines which implement either
the regular expression, skyline or stochastic gradient descent
operator. Each hardware engine is runtime parameterizable
such that it can adapt to the current query.

2.1 MonetDB
We integrate hardware operators into MonetDB using its

native UDF interface. Unlike most databases which re-
quire the invocation of the UDF for each tuple, in MonetDB
UDFs can operate on complete columns, called binary as-
sociation tables (BATs). To guarantee that the operators
on the FPGA can access the data in MonetDB, we altered
MonetDB’s memory allocation to use a custom memory al-
locator which manages the CPU-FPGA shared memory. In
the current prototype system this region is limited to 4 GB,
but this is not a fundamental limitation and should be lifted
in future generations of the Xeon+FPGA system.

2.2 Hardware Operator Abstraction Layer
The HAL provides two main functionalities an API to con-

struct and monitor jobs on the FPGA and the custom mem-
ory allocator for the CPU-FPGA shared memory region.
After the initial handshake between software and hardware
which is executed through Intel’s AAL (Accelerator Abstrac-
tion Layer) library, all control communication is handled
by the HAL. The HAL allocates all control data structures
such as the job queue, job parameters, and job status in the
shared memory region, thereby they are accessible from soft-
ware and hardware. Similarly all the BATs, data columns,
and intermediate results of MonetDB and the result BATs
produced by the FPGA are allocated in this region.

When the HUDF in MonetDB creates a job through the
HAL, a job is enqueued in the job queue in shared memory,
where each operator type has its own queue. On the FPGA
the Job Distributor is constantly monitoring these queues
and assigning new jobs to available engines of this operator
type. The HAL module on the FPGA also arbitrates the
memory access from the four engines.

2.3 Execution Walkthrough
We want to illustrate the functionality of our system and

the interaction of the three main components: MonetDB,
HAL, and Hardware Engines through an execution walk-
through. The walkthrough explains the execution of a reg-
ular expression query, but the same steps apply to other
hardware operators. The following steps are required when
processing a user query, while the corresponding numbers in
Figure 1 show where in the system they take place:

1. A query containing a regular expression is submitted.

2. As part of executing the query, MonetDB calls the
UDF. The regular expression string and the input BAT
are provided as parameters.

3. The UDF converts the regular expression into a config-
uration vector, allocates memory for the result BAT,
and calls the HAL to create a new FPGA job.

4. The HAL allocates memory for the job parameters and
job status data structures and populates them.

5. The HAL enqueues a job into the corresponding shared
memory job queue.

6. The Job Distributor logic inside the HAL on the FPGA
fetches the job from the job queue and assigns it to an
idle Regex Engine (Engine 1 in this example).

7. The Regex Engine reads the parameters from shared
memory and configures itself with the configuration
vector. It then starts the execution and processes the
input BAT.

8. After the engine terminates, it sets the done bit in its
status memory and updates various statistics about
the execution.

9. The UDF waits on the done bit and then hands the
result BAT over to MonetDB.

Thanks to the standard UDF interface, HAL abstraction,
and parameterizable regular expression operators on the FPGA,
any regular expression given by a user query can be offloaded
to hardware.

2.4 Regular Expression Engines
Each regular expression engine is capable of processing

strings at 6.4 GB/s, with up to four engines leading to an
aggregated bandwidth of 25.6 GB/s. However on the current
platform the throughput is limited by the QPI link to around
6.5 GB/s, therefore deploying more than one shows only a
slight improvement and deploying more than two shows no
further improvement. The regular expression engines are
parametrized before each query with a 512 bit configuration
vector. This configuration vector is generated on the soft-
ware side in the HUDF, more details can be found in [3].
Therefore the FPGA does not have to be reprogrammed to
support multiple different queries.

2.5 Analytics Engines
The two analytics operators used for the demonstration

are SKYLINE and SGD (stochastic gradient descent).
We integrated the skyline operator implementation of Woods

et. al [5] into MonetDB as a HUDF. The skyline opera-
tor works on multiple columns and finds a list of records
which are not worse than any other (i.e. they are part of
the pareto optimal set). A common example, is a query
over hotels which have a price and distance to the beach
attribute. In this case the skyline operator would return all



hotels which are not worse than any other hotel for these two
attributes. Skyline is an iterative compute-bound operation
with a variable runtime, similar to many machine learning
algorithms. In our implementation the skyline operator can
be parametrized at runtime to operate on up to 16 different
attributes.

SGD is a very commonly used algorithm for training lin-
ear machine learning models. It is based on vector algebra,
thus the inherent parallelism and deep-pipelined computa-
tion provided by an FPGA provides speedup over state-of-
the-art CPU implementations. We integrate an SGD opera-
tor into MonetDB as a HUDF, so that linear model training
can be performed on newly imported or already existing data
in relational tables. The SGD operator supports data sets
with up to 100,000 features and it is highly parameterizable
(e.g., the convergence rate of the optimization, the frequency
of model updates), so that the training can be tuned to the
target data set to achieve an optimal convergence of the op-
timization problem.

3. DEMONSTRATION

3.1 Setup
For our demonstration we use version 1 of the experimen-

tal Xeon+FPGA system released under the Intel-Altera Het-
erogeneous Architecture Research Platform1 program [1].

The system has two sockets and each socket is its own
NUMA region. One of them contains a 10-core CPU (Intel
Xeon E5-2680 v2) and the other an FPGA (Altera Stratix
V 5SGXEA). In this experimental system it is only possi-
ble to install memory in the CPU’s NUMA region which
is equipped with 96 GB of main memory. The FPGA has
cache-coherent access to the memory through the QPI bus.
This memory access is clearly bound by the available QPI
bandwidth which we measured to be around 6.5 GB/s for
read-intensive workloads. The reason for this low band-
width is partially in the prototype QPI endpoint which is
implemented in FPGA logic and only runs at a frequency
of 200 MHz. The QPI endpoint is part of the prototype
system and cannot be modified. Based on announcements
form Intel [2], we expect the memory bandwidth to increase
significantly in the next generation of the platform.

The system runs Ubuntu 14.04 and a modified version of
MonetDB (11.21.19) that includes all adaptations required
to integrate the HUDFs.

3.2 Scope and Presentation
For the demonstration the user can interact through a

web interface with the database. The interface consists of
two parts: 1) A simple form to submit single regular expres-
sion queries and retrieve the corresponding result and 2) a
dashboard to deploy two different types of workloads and
monitor the effect of hardware acceleration on the system.

A) Single Query
The web interface for this part is shown in Figure 2, the
visitor of the demonstration will be able to choose among a
varying number of queries and database tables. These vary

1Results in this publication were generated using pre-
production hardware and software donated to us by Intel,
and may not reflect the performance of production or future
systems.

Figure 2: Single Query dashboard

Figure 3: Workload acceleration dashboard

in regards to pattern complexity, size of the table, selectiv-
ity of the regular expression predicate and can be executed
either with hardware acceleration enabled, software-only, or
in a hybrid fashion between HW and SW. The visitor will
see the different type of queries our system can handle and
observe the effect of hardware acceleration through the re-
ported response time. Additionally the results of the query
are presented in the UI to the visitor, so they can verify their
correctness.

In the case of the regex operator we will illustrate that
the operator can be used even if the patterns in the selec-
tion is too large to fit on the deployed regular expression
circuit on the FPGA. To still benefit from hardware accel-
eration it can be execute in a hybrid mode where it is par-
tially evaluated on the FPGA and partially in software. As
can be observed in the demonstration even a partial eval-
uation on the FPGA gives a significant performance boost
over software-only evaluation.

B) Workload Acceleration
The interface used for this part of the demonstration can be
seen in Figure 3. The user can deploy two different type of
clients. The first type is executing a query using any of the
hardware operators as chosen in the drop-down selection on
the left. The second type executes simple queries to generate



load on the system. The user has the option to either start
only the clients running hardware operator queries or both.
When the demonstration is running the web interface will
fetch in intervals of 5 seconds the aggregated throughput of
the clients as well as the current CPU utilization. To see
the impact of hardware acceleration, the visitor can enable
and disable it while the clients are executing the queries.
The impact can then be observed in real-time through the
changes observed in the graphs.

4. INSIGHTS FOR THE DEMO VISITORS
The demonstration should convey the insights we gath-

ered related to the benefits and drawbacks of using a UDFs
to interface with the accelerator. The abstraction of Hard-
ware User Defined Functions (HUDFs) provide a seamless
integration of hardware operators and hide the complexity of
offloading to an accelerator from the database engine. This
makes it possible to use the accelerator in many scenarios,
and even compose its results easily with software operators
(i.e. in case of hybrid execution of regular expressions).

However the UDF interface also imposes some limitations,
e.g., depending on the database only one tuple at a time can
be passed to the UDF, or the number of tables or columns a
UDF can operate on is usually limited. An other important
drawback, especially since we use UDFs to hide an accel-
erator, is that from the point of the database engine the
UDF acts like a black box. Thereby making any predictions
about its execution cost or runtime is nearly impossible in
traditional database engines.

However, information regarding the accelerator such as ca-
pacity, current load, and a performance model are all avail-
able and could be made available to the database engine.
This would mean exposing the accelerator as a more trans-
parent unit and would allow the query optimizer to build a
cost model. This is also an answer to the general problem of
using accelerators when they indeed make execution faster.
If, for instance, an accelerator is fully utilized but there are
free cores on the CPU, it might make sense to execute the

operator in software. To achieve a better integration with
the query engine, the HUDF interface has to be extended
further and the execution model of the accelerator has to
be communicated in a way that is compatible with software.
We plan to address these challenges in future work.

As for the choice of platform, in our work we used an In-
tel Xeon+FPGA system, one of the first high-performance
shared-memory hybrid architectures. Given the announce-
ments of future Xeon+FPGA systems [2] or the development
of cache-coherent interfaces for accelerators such as Open-
CAPI and CCIX, we expect to see more hybrid systems and
an even tighter integration between accelerators and CPUs.
As we showed in this work databases can benefit significantly
from hybrid shared memory architectures, especially in re-
gards to compute-intensive operations, and this benefit will
only increase with tighter integration.

Acknowledgments
We would like to thank Intel for their generous donation of
the HARP machine. Part of this work was funded through
the Microsoft Joint Research Center MSR-ETHZ-EPFL.

5. REFERENCES
[1] N. Oliver, R. Sharma, S. Chang, et al. A reconfigurable

computing system based on a cache-coherent fabric. In
ReConFig’11.

[2] P.K. Gupta. Accelerating datacenter workloads.
http://www.fpl2016.org/slides/Gupta%20--%
20Accelerating%20Datacenter%20Workloads.pdf.

[3] D. Sidler, Z. István, O. Muhsen, and G. Alonso.
Accelerating pattern matching queries in hybrid
CPU-FPGA architectures. In SIGMOD’17.

[4] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel. CAPI:
A coherent accelerator processor interface. IBM J.
Research and Development, 59(1), Jan 2015.

[5] L. Woods, G. Alonso, and J. Teubner. Parallel
computation of skyline queries. In FCCM’13.


