Emerging new platforms

Hybrid CPU-FPGA Architectures:
- Programmable hardware
- Direct access to shared memory
- FPGA as co-processor (instead of accelerator)

Hybrid database

Integration:
- UDFs can create and monitor jobs on the FPGA through Centaur[1]
- Operators on the FPGA are represented as hardware threads
- Concurrent execution of hardware operators

Hardware operators

Regular Expression [2]
- NFA skeleton parameterized at run-time
- Expression translated into config. vector
- High throughput by deploying parallel NFAs

Deep Pipelining
- Keeps candidate set in on-chip pipeline composed of memory cells and comparison logic
- Depending on result size performs multiple iterations

Custom precision
- Works on compressed data (Probabilistic rounding to <32 bits)
- Exploits MIMD parallelism
- Implements custom data types

Database of the future

Acknowledgements: We would like to thank Intel for their generous donation of the HARP v1 prototype. This work is funded in part through the Microsoft Joint Research Center MSR-ETHZ-EPFL.

[1] Owaida et al., Centaur: A Framework for Hybrid CPU-FPGA Databases, FCCM’17

[2] Sidler et al., Accelerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures, SIGMOD’17
