
In-Storage Computation of Histograms with
Differential Privacy

Andrei Tosa, Anca Hangan, Gheorghe Sebestyen
Technical University of Cluj-Napoca, Romania

{firstname.lastname}@cs.utcluj.ro

Zsolt István
TU Darmstadt, Germany

zsolt.istvan@cs.tu-darmstadt.de

Abstract—Network-attached Smart Storage is becoming in-
creasingly common in data analytics applications. It relies on
processing elements, such as FPGAs, close to the storage medium
to offload compute-intensive operations, reducing data movement
across distributed nodes in the system. As a result, it can offer
outstanding performance and energy efficiency.

Modern data analytics systems are not only becoming more
distributed they are also increasingly focusing on privacy policy
compliance. This means that, in the future, Smart Storage will
have to offload more and more privacy-related processing. In
this work, we explore how the computation of differentially
private (DP) histograms, a basic building block of privacy-
preserving analytics, can be offloaded to FPGAs. By performing
DP aggregation on the storage side, untrusted clients can be
allowed to query the data in aggregate form without risking the
leakage of personally identifiable information.

We prototype our idea by extending an FPGA-based dis-
tributed key-value store with three new components. First, a
histogram module, that processes values at 100Gbps line-rate.
Second, a random noise generator that adds noise to final
histogram according to the rules dictated by DP. Third, a
mechanism to limit the rate at which key-value pairs can be
used in histograms, to stay within the DP privacy budget.

I. INTRODUCTION

Data analytics applications in the cloud and datacenters
today run in a distributed manner, separating compute nodes
from storage nodes to increase elasticity and to be able to scale
the compute resources independent from storage capacity.
This architecture, even though overall beneficial, suffers from
various data movement bottlenecks. Networked Smart Storage,
such as Amazon Aqua [1], is an emerging option to provide
query offload close to the data source, reducing data movement
bottlenecks and speeding up overall processing.

With the emergence of stricter privacy regulation, such
as GDPR, data analytics and storage face a novel set of
challenges [11]. Recent work in the space of Smart Storage
shows that, beyond challenges, there are also opportunities to
be had [5]. One such opportunity is in implementing some
form of privacy preserving computation inside the storage.
There are many types of processing that balance data utility
and user privacy, with Differential Privacy (DP) [4] being
one widely-used example. DP is widely used for releasing
statistics, such as histograms or aggregates about a collection
of persons without exposing the contribution of an individual’s
data in the final result. Histograms with DP are especially
often used in practice, for instance, by Google in various
contexts [2], [13] and the US Census Bureau.

Fig. 1. To compute differentially private histograms, regular histograms are
computed on the data and noise is added to the counts. The frequency at
which such histograms can be created on a dataset has to be controlled, to
disallow statistical attacks on the results.

Motivated by the above, we explore how one can offload
differentially private histogram computation to an FPGA in
a Smart Storage node. Our prototype builds on an open-
source key-value store and exposes two interfaces: a traditional
get/set interface to the actual data for privileged users and a
separate, histogram-based interface for non-privileged users.
By the nature of DP, the modules we implement will not be
in use continuously – in DP, there is a limit to how often
queries on the same dataset can be repeated before depleting
the so called privacy budget. Nonetheless, to avoid slowdowns
in other, privileged queries, we designed our modules to be
able to handle the 100Gbps data rate of the key-value store.
We implement our prototype as three modules (see Figure 1):

• A module that computes equi-width histograms on tuples,
made up of a numerical “property” field and a “condition”
field. This module uses multiple parallel pipelines to
accelerate processing.

• A noise generator with Laplace distribution as required
by DP. This module is composed of a pluggable random
number generator and a distribution mapper.

• A mechanism to limit the frequency with which key-value
pairs can be accessed by histogram queries issued by un-
privileged users (i.e., rate limiting). This mechanism is
necessary to ensure that DP privacy budgets are respected.

II. BACKGROUND AND RELATED WORK

A. Differential Privacy and Histograms

Differential Privacy (DP) [4] allows publishing statistics
about sensitive datasets in a way that hides the information
about specific individuals in that dataset. The underlying idea
of DP is that if each individual’s contribution has only a small

effect on the final statistical results, this can be masked by
adding a carefully chosen amount of noise that maximizes
data utility while also protecting privacy.

In this work we focus on histograms computed on numerical
data, for instance, the occurrence of a disease or condition in
an age group or income level [14], or the count of people in a
specific shop at different times during the day [13]. In order to
make a histogram DP, noise needs to be added to each category
after computation1. This noise is sampled from a Laplace
distribution, with a mean of zero. The magnitude of the noise
is a function of the ϵ sensitivity parameter chosen – plainly
put, the larger the magnitude, the better the privacy protection
but the lower the utility of the resulting histogram. The choice
of ϵ will determine how much private information is “leaked”
on each re-generation of a histogram and together with the
“privacy budget” determines how often a specific dataset can
be used to generate statistics. The mechanisms determining the
privacy budget and the choice of ϵ are orthogonal to this paper
but there is related work that provides practical examples [2].

Computation of histograms on database pages and key-value
store data has been explored in various related work [6],
[9], [10]. The main challenge of computing histograms on
FPGAs is related to handling numerical data spread across
a wide range (e.g., 64bit integers) where it’s infeasible to
maintain a count at very small granularity – hence some form
of normalization or coarser grained view is needed. Related
work showed that histogram creation can only be partially
parallelized for higher throughput because a final aggregation
of partial sums is always necessary [6]. In this work, we adopt
best practices of histogram computation.

B. Smart Storage and Multes

Smart Storage has been the subject of research for
decades [3], [7]–[9] and today, in an effort to alleviate data
movement bottlenecks in Big Data analytics, Smart Storage is
being actively used in the cloud. Many of these solutions rely
on FPGAs and expose a key-value store interface. Notable ex-
amples are Amazon AWS Aqua [1] and Samsung SmartSSDs.

Our prototype extends Multes, an open-source FPGA-based
key-value store that exposes a 100Gbps TCP/IP network
interface 2. Its high level architecture can be seen in Figure 2:
it is composed of 1) a networking module (running at 100Gbps
rate on a Xilinx Alveo U280 board), 2) a Cuckoo Hash Table
module, that stores keys and pointer to the “value storage
area”, 3) the Value Store logic that reads and writes values
to storage (in the case of the U280, to HBM memory), and 4)
a streaming interface for plugging in user processing.

Multes exposes typical GET/SET/DELETE operations over
the network, to software clients. The user-defined processing
can be invoked with GETCOND operations: these resemble a
GET request but can also transmit parameters to the processing
modules. The user-defined module receives values read by the

1We focus on equi-width histograms whose categories can be considered
public knowledge. There are more sophisticated schemes in the related work
for other scenarios.

2https://github.com/zistvan/Multes for Vitis with 100Gbps TCP-IP

Fig. 2. Multes is a 100Gbps KVS, running on a Xilinx Alveo U280 card,
using HBM memory for storing key-value pairs. We extend its functionality
with three modules, highlighted in orange.

GETCOND command over a 512bit streaming interface and
can return arbitrary transformed data to the clients.

Multes has a leaky-bucket-based performance isolation
functionality to provide QoS to multiple key-value store
clients. This mechanism acts as a rate limiter on the number
of operations performed per second (and the bandwidth usage)
for each client. The rate limiting functionality required for the
DP prototype is similar but it has to ensure globally that keys
are not read too often by histogram-creation queries.

III. IMPLEMENTATION

As can be seen highlighted in Figure 2, we extend Multes
with three modules: 1) equi-width histogram module, 2)
Laplace noise generator and 3) rate limiting for reads used
in histogram creation. We rely on the existing connection
points for user processing to add a histogram module with its
corresponding noise generator, and we extend the hash table
to perform read rate limiting for GETCOND operations.

For the purpose of this work, we will assume that
the values stored in the key-value store contain lists of
{property, category} tuples. The property is a 32bit numerical
property of an individual (e.g., age, income, height, etc.)
and category is a 32bit flag that describes the categories an
individual belongs to (e.g., smoker or not, suffering from a
specific disease, etc.). The histograms are then computed on
all tuples that have a specific value for their category, making
buckets of the ranges of property and counting occurrences
in each bucket. To create a histogram, the lists of tuples in
several key-value pairs (each in the KB range) can be merged
by reading them iteratively with GETCOND. These operations
can also encode the “last request” so the histogram module can
generate its final output.

A. Equi-Width Histogram Computation

The computation of the histogram is performed in several
parallel and pipelined steps, as shown in Figure 3. Value data
is received from the Multes pipeline on a 512bit streaming
interface which is split in 64bit tuples, fed into several data-
parallel pipelines. Tuples consist of a 32bit property and a
32bit flag part. The histogram module is parameterized at the
beginning of the computation, using the GETCOND command
format, with a constant that is compared to the flag in each
tuple. If these are equal, the property part of the tuple is
sent to the next step (Normalizer), otherwise it is dropped.

https://github.com/zistvan/Multes_for_Vitis_with_100Gbps_TCP-IP

Fig. 3. The histogram computation is performed in two phases. First, tuples
are counted into high resolution buckets by several parallel units. Second,
these array data structures are merged and the final, course granularity,
histogram is created (H < B).

The Normalizer step converts 32bit unsigned integers to B-
bit unsigned integers using Min-Max normalization. This is
done so that the Bucketer module can create a high resolution
histogram with 2B buckets of the data. In our prototype B=12
but B=16 could also be a reasonable value to pick – of course,
with a larger value of B the cost of computing the final equi-
width histogram grows linearly.

Overall, the performance bottleneck of this design is in this
Normalize+Bucketer step, which can only process data with
an initiation interval (II)=3. Therefore, in order to handle one
512bit input per cycle, 24 parallel units are instantiated in our
design. The second part of the computation (right-hand side
of Figure 3) has an II=2 but it works on smaller data than
the input (2B bytes instead of potentially megabytes). Also,
it is very difficult to parallelize that step given the need to
construct one merged data structure.

Partial counts are merged after all input has been consumed
and each parallel bucketer. The merging step results in an
Equi-Width Histogram with 2H buckets. H can be configured
at run-time and, to provide compact statistics to clients, H
will typically be at least an order of magnitude smaller than
B. At the end of this histogram creation step, a stream
of {bucket_begin, bucket_end, count} tuples are
sent to the Denormalizer. The Denormalizer performs the
reverse of the initial Min-Max normalization on the bucket
boundaries, bringing this way the histogram into the same
domain as the original input. The count of each bucket is not
modified by this step but noise is added to them as the last
operation. This is done in a streaming fashion and the result
is packed onto a 512bit wide AXI Stream.

For space reasons, we omit the details of metadata handling
that is necessary for Multes to send responses back to clients
and have to be propagated through the histogram module.

B. Noise Generation

To add noise to DP results, a Laplace distribution needs
to be sampled. In our implementation, we approximate this
by using a uniform pseudo-random number generator of
32bit size, based on a well-established cellular automata
design [12], and adding by transforming these to values
from a Laplace distribution. Having a random variable X
drawn from a uniform random distribution with values in the

(− 1
2 ,

1
2) interval, the random variable L will have a Laplace

distribution with scale b, according to the following formula:
L = −b ∗ sgn(X) ∗ ln(1 − 2|X|). Thanks to the fact that
the C++ cmath library works with HLS, we were able to
implement this step without having to make further changes
apart from re-mapping the random number output from [0, 232)
to (− 1

2 ,
1
2). As will be seen in the Resource Consumption, this

design requires several DSPs but the base Multes system uses
almost none, so it is a good tradeoff.

When configuring the noise generator, the magnitude of the
noise depends, among other factors on the “privacy budget”
allocated. We utilize a Laplace distribution of scale 1/ϵ, as
in related work [14]. For instance, when ϵ = 1, our noise
generator will add up to ±2 to the count of each bucket.
The choice of ϵ depends on various security factors and, thus,
we allow the scale of the noise to be configured at run-time,
instead of hard-coding it.

The random number generator is not in the critical path of
performance. Nonetheless, the module is able to generate 32bit
outputs with II=1, more than sufficient for the final histogram,
which creates its buckets with only II=3.

C. Read Rate Limiter

Generating histograms repeatedly on the same dataset will,
over time, reduce the privacy guarantees each individual entry
benefits from. For this reason, it must be possible to limit
the rate at which data can be used for histogram creation by
unprivileged users. We investigated two ways of doing so.

The first option relies on the existing rate limiters of Multes.
By modifying them to account for the data sizes retrieved from
storage, instead of those sent/received over the network, it is
possible to ensure that the underlying data is not read at a rate
higher than what the privacy budget allows. This approach,
however, is conservative because it depletes the global privacy
budget regardless of the locality in accesses.

The second option, which we use in our prototype, adds
a “last read” metadata field to all key-value entries. All key-
value accesses with the purpose of creating a histogram (i.e.,
GETCOND operation) will be checked against the budget
criteria. Overall, this approach gives a more fine-grained
control but requires an additional hash table write for each
GETCOND operation. In our prototype this is not an issue
because HBM used for storing the hash table is fast enough.

IV. EVALUATION

We evaluate our prototype using a Xilinx Alveo U280 card
plugged into a server machine with an AMD EPYC 7402P
processor and 128GBs of DRAM. The FPGA and the server
communicate through a 100Gbps link. We have configured
Multes to use HBM memory for its data storage and relied
on the networking-enabled XACC shell for Alveo to provide
100Gbps TCP/IP connectivity. Due to the limitation of only
one machine, we conducted measurements directly on the
FPGA, using debugger probes to measure processing rates.

Q1: Does the additional bookkeeping inside the hash table
reduce performance? We compared the performance of Multes

0 1 2 3 4
0

5

10

15

100Gbps line-rate req.

Value size [KB]

R
ea

d
tp

ut
.[

G
B

/s
]

Fig. 4. The internal throughput of the Multes pipeline can match 100Gbps
line-rate for GETs when the average value size is above 1.5KB. Below this
number, the hash table logic is the bottleneck. The presence of DP rate-limiting
logic has no measurable impact on performance (when not throttling).

0 2 4 6 8
0

0.5

1

1.5
·105

Total input size [MB]

To
ta

l
cl

oc
k

cy
cl

es Final histogram
Bucketing of input

Fig. 5. Using the Histogram module for small datasets will introduce
significant latency overhead, due to the final step of the computation (buckets-
to-histogram with noise). For datasets of at east a few MBs, the share of this
overhead becomes negligible.

with our prototype implementation and observed equal behav-
ior. We plot the internal bandwidth of the key-value store in
Figure 4, as a function of request size. The figure contains one
line because the performance of the two variants is identical
because the HBM on the FPGA is fast enough to handle one
additional write operation on each access. Once the values are
larger than 1.5KB, 100Gbps line-rate can be achieved. The
histogram functionality does not modify writes or deletes so
we omit such experiments for the sake of succinctness.

Q2: What is the cost of computing a histogram? The cost
consists of two parts: i) processing the data in several key-
value pairs into an intermediary representation (buckets) and
ii) creating the final histogram with noise based on the buckets.
The first cost is a direct function of the amount of data sent to
the histogram module, which runs at constant 512 B/s speed at
250MHz. The second step is determined by the bucket count
(4096 in our case) because it processes one bucket every two
cycles. Figure 5 shows that, not surprisingly, for small datasets
(less than 2MB) the constant cost of histogram creation will
be a significant overhead, for larger datasets, this shrinks to a
less than 10% overhead.

Q3: How many additional resources are used? The over-
head, in terms of resources, of the rate limiting module is
negligible. The overhead of the histogram module, especially
the parallel bucketing steps is, however, significant. In Figure 6
we show the resources used by i) the Vitis shell on the U280,
ii) by Multes with rate limiting and iii) by the histogram
module and noise generator. Due to the 24 parallel units used
for bucketing and the wide, 512 b input streams, the design
requires a significant number of BRAMs for this part. The
number of BRAMs increases linearly with the number of

Component LUT BRAM URAM DSP
(Available on device 1303k 4032 960 9024)
Platform (shell) 253k 632 19 4
Multes and Rate Limit 42k 280 24 0
Histogram and Noise 101k 220 0 211

Fig. 6. As expected, the histogram module requires a high number of BRAMs.
Their number scales linearly with the parallelism level of the bucketers and
the resolution of the intermediary data structure (default 4096 buckets).

parallel pipelines. The HLS compiler is able to utilize DSPs
for the normalization operations, which is good because no
other modules use DSPs.

V. CONCLUSION

This work demonstrates the feasibility of implementing
histogram computation with differential privacy inside a Smart
Storage node. This has been motivated by a larger effort
of adding more privacy-preserving computation to the stor-
age layer of data-intensive analytics applications. The im-
plemented prototype modifies an open-source key-value store
on a 100Gbps Alveo U280 board. As the Evaluation shows,
all steps required can be implemented on the FPGA and the
resource consumption of the new modules scales linearly with
their nominal processing rate.

ACKNOWLEDGMENT

We would like to thank Xilinx for their generous donation
of hardware and software used in this work.

REFERENCES

[1] AQUA (advanced query accelerator) for amazon redshift. accessed
01/06/21. https://aws.amazon.com/redshift/features/aqua/.

[2] S. Bavadekar, A. Dai, J. Davis, D. Desfontaines, I. Eckstein, et al.
Google covid-19 search trends symptoms dataset: Anonymization pro-
cess description (version 1.0). arXiv preprint arXiv:2009.01265, 2020.

[3] J. Do, Y.-S. Kee, J. M. Patel, et al. Query processing on smart SSDs:
opportunities and challenges. In SIGMOD’13.

[4] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography
Conference, 2006.

[5] Z. István, S. Ponnapalli, and V. Chidambaram. Software-defined data
protection: low overhead policy compliance at the storage layer is within
reach! Proceedings of the VLDB Endowment, 14(7), 2021.

[6] Z. Istvan, L. Woods, and G. Alonso. Histograms as a side effect of data
movement for big data. In SIGMOD’14.

[7] S.-W. Jun, M. Liu, S. Lee, J. Hicks, et al. Bluedbm: Distributed flash
storage for big data analytics. ACM Transactions on Computer Systems
(TOCS), 34(3), 2016.

[8] P. Mehra. Samsung smartssd: Accelerating data-rich applications.
Proceedings of the Flash Memory Summit, 2019.

[9] B. Salami, G. A. Malazgirt, O. Arcas-Abella, A. Yurdakul, and N. Son-
mez. Axledb: A novel programmable query processing platform on fpga.
Microprocessors and Microsystems, 51, 2017.

[10] A. Shahbahrami, J. Y. Hur, B. Juurlink, and S. Wong. Fpga imple-
mentation of parallel histogram computation. In HiPEAC Workshop on
Reconfigurable Computing, 2008.

[11] S. Shastri, M. Wasserman, and V. Chidambaram. The seven sins
of personal-data processing systems under GDPR. In USENIX Hot-
Cloud’19, 2019.

[12] D. B. Thomas and W. Luk. High quality uniform random number gener-
ation using lut optimised state-transition matrices. The Journal of VLSI
Signal Processing Systems for Signal, Image, and Video Technology,
47(1):77–92, 2007.

[13] R. J. Wilson, C. Y. Zhang, W. Lam, et al. Differentially private sql with
bounded user contribution, 2019.

[14] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett. Differentially
private histogram publication. The VLDB Journal, 22(6), 2013.

https://aws.amazon.com/redshift/features/aqua/

	Introduction
	Background and Related Work
	Differential Privacy and Histograms
	Smart Storage and Multes

	Implementation
	Equi-Width Histogram Computation
	Noise Generation
	Read Rate Limiter

	Evaluation
	Conclusion
	References

