Storing Parquet Tile by Tile:

Lucas Kuhring, Zsolt Istvdn
IMDEA Software Institute, Madrid, Spain
{firstname.lastname } @imdea.org

Application-aware Storage with Deduplication

Abstract—Distributed storage in the cloud needs to offer both
low latency and high bandwidth access to data and efficient use
of storage capacity in order to keep up with emerging big data
workloads. Deduplication has been successfully used to help with
the latter requirement but it is often at odds with low latency data
access. Deduplication ratios can be significantly increased if the
storage nodes are aware of the file format and the ways clients
interact with it — but implementing different file-type specific
parsing on FPGAs for multiple tenants can be unfeasible due to
area constraints.

We show the benefits of making the storage system aware of
the application through the example of Parquet files, a columnar
format used in machine learning and big data frameworks to
store and transfer datasets. We achieve high deduplication ratios
by using a companion software library that allows Parquet files
to be stored in a ‘“divided” way. This makes deduplication more
efficient and enables clients to access individual columns or meta-
data fields selectively. At the same time, the storage nodes remain
general purpose and can store and deduplicate arbitrary data.

This work paves the way for in-storage processing for Parquet
files and other columnar formats because the different columns
can be accessed in a streaming fashion and their processing
requires no specialized logic on the FPGA.

Index Terms—FPGA, distributed storage, deduplication, col-
umn stores, application-aware storage

I. SYSTEM OVERVIEW

We designed Multes++ [6] such that it fulfills the following
goals without compromising line-rate behavior for reads:

1) Deduplicate the data stored in the key-value store, aim-
ing for line-rate for values in the kilobyte range.

2) Allow the clients to store up to megabytes in a single
logical key-value pair, so that Parquet files can be
transparently handled in FPGA-based storage.

3) Ensure high deduplication ratios for Parquet files (that
are often modified by adding and removing columns or
appending large batches of tuples to the data) without re-
quiring file-type-specific specialization of the hardware.

A. Hardware Architecture

Due to growing power consumption concerns, there is an in-
creasing interest in offering FPGA-based or FPGA-accelerated
distributed storage in the datacenter [1], [3], [4], [7], [8]. We
achieve the above stated goals by extending one of these state
of the art systems, namely Multes [5].

Multes implements a multi-tenant key-value store on FPGAs
that provides replication for fault tolerance, pluggable process-
ing on the “read path” and regular 10Gbps TCP/IP connectivity

DDR Memory

Sof li 10Gbps Replication ok
oftware clients TCP/IP p

SHA256 of Hash Table Value
Value Access

Protocol
Processing

Key in Hash Table Pointer Meta-data

~

FooBar 0x1112 - -__ OXxDEADBEEF
OXDEADBEEF 0x1112 | A ey

0x3256 ! Value
Otherkey 0x1112---"" OXDEADBEEF memory
ThirdKey 0x3256

Fig. 1. Multes is extended with deduplication logic that consists of hashing
cores, as well as, additional hash table operations to manage value fingerprints.

to clients. This work is orthogonal to the multi-tenancy and
replication aspects, and inherits them from Multes.

We extend the internal pipeline of Multes with logic for
deduplication-related computations. As shown in Figure 1, the
most important addition to the pipeline is a SHA256 hash step
before the hash table that processes the values. To achieve line-
rate throughput, we deploy several SHA256 cores in a data
parallel fashion, to work on different input key-value pairs.

We modify the hash table to manage the fingerprints of value
chunks, used to detect duplicates. As shown in Figure 1, the
hash table stores regular entries and fingerprints side by side,
and each regular key entry has a reference to its value’s finger-
print. The implementation of deduplication required changes
to the write and delete operations, but no changes to read
operations, resulting in identical “get” behavior to Multes.

B. Software Library

In addition to the hardware changes, Multes++ has a soft-
ware library that abstracts away FPGA idiosyncrasies (e.g.,
that there is an upper bound on value sizes) and provides
general purpose high level operations. Building on top of the
“protocol” layer, that encodes requests on the wire, the library
implements so called “large values”. It can store arbitrarily
sized key-value pairs by transparently breaking them up into



several physical pairs and storing them as a linked list. The
library offers the abstraction of arrays as well, that allows
retrieving either specific items or the entire array. This fea-
ture can be combined with large values to store potentially
hundreds of MBs under a single logical key.

Parquet files are stored not as BLOBs but are, instead,
broken up into pieces by the software library. This allows for
as good, or better, deduplication ratios of modified Parquet
files than the state of the art Variable Sized Chunking (VCS)
methods. These are successful in inferring “cut points” in
the data structure based on common patterns across files but
require costly computations of running hashes [2]. In contrast,
our approach relies on the knowledge of the internal structure
of the file to determine chunk boundaries and requires no ad-
ditional computation. The Parquet functionality is built using
the array abstraction, where each page of the file corresponds
to an array entry. We store the meta-data and headers under
special keys that allows the client to selectively access columns
or pages of the potentially very large Parquet files.

II. DEMO SETUP AND EXPERIMENTS

The demonstration is controlled and visualized through
a Jupyter notebook. Multes++ runs on stand-alone Xilinx
VCU1525 boards with Virtex Ultrascale+ FPGAs that are in
the same 10Gbps cluster as the client machines.

As seen in the top part of Figure 2, we show that dedu-
plication has no significant impact on the throughput or
latency by comparing Multes++ to Multes (no deduplication),
and to memcached, for a software baseline. Clients issue
set commands with large Parquet files to measure the write
bandwidth. Visitors can choose between a set of Parquet files
of varying sizes.

In the second part of the demonstration, we show that
our proposed file-type-aware chunking scheme delivers as
good deduplication ratios as state of the art methods. For
this, we store three versions of a Parquet file using different
deduplication methods and we measure the total amount of
storage used. The results are plotted after the experiment has
run as a bar chart showing the total amount of storage space
in use on the node (Figure 2).

The last part of the demonstration comprises of a small
Python application that the visitors can interact with. The
client library exposes bindings to Python and can be used
to read specific columns of a Parquet file without having
to retrieve all data. In the provided example we access two
columns of a Parquet file containing the Flight History dataset
from DataSF (https://datasf.org/opendata/). The
file resides on the FPGA, and the Python application loads the
columns into a Pandas DataFrame for analysis to determine
which companies had the heaviest cargo landing at SFO.

The additional importance of this integration with Python
is that it enables future in-storage processing of columnar
data formats (e.g., push-down of various filtering expressions),
controlled directly from high level applications.

" dea Multes++

Selective Reads from Python

™

Fig. 2. The demonstration is controlled and visualized through an interactive
Jupyter notebook.

REFERENCES

[1] M. Blott, L. Liu, K. Karras, and K. A. Vissers. Scaling out to a
single-node 80gbps memcached server with 40terabytes of memory. In
HotStorage’15, 2015.

[2] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki. Improving duplicate
elimination in storage systems. ACM TOS, 2(4), 2006.

[3] S. R. Chalamalasetti, K. Lim, M. Wright, et al. An FPGA memcached
appliance. In FPGA’13. ACM, 2013.

[4] E. S. Fukuda, H. Inoue, T. Takenaka, D. Kim, T. Sadahisa, T. Asai, and
M. Motomura. Caching memcached at reconfigurable network interface.
In FPL’14. IEEE, 2014.

[5] Z.Istvéan, G. Alonso, and A. Singla. Providing multi-tenant services with
FPGAs: Case study on a key-value store. In FPL’IS8, 2018.

[6] L. Kuhring, E. Garcia, and Z. Istvan. Specialize in moderation—building
application-aware storage services using FPGAs in the datacenter. In
USENIX HotStorage’19.

[7] M. Lavasani, H. Angepat, and D. Chiou. An fpga-based in-line accelerator
for memcached. IEEE Computer Architecture Letters, 13(2), 2014.

[8] S. Xu, S. Lee, S.-W. Jun, M. Liu, J. Hicks, et al. Bluecache: A
scalable distributed flash-based key-value store. Proceedings of the VLDB
Endowment, 10(4), 2016.



