

Systems@ETH zürich

Zsolt István^{*}, Gustavo Alonso, Ankit Singla Systems Group, Computer Science Dept., ETH Zürich ^{*} Now at IMDEA Software Institute, Madrid

Providing Multi-tenant Services with FPGAs: Case Study on a Key-Value Store

FPGAs in the Cloud

- Wider adoption of FPGAs (e.g., Amazon F1, Microsoft Catapult, ...)
- Many promising use-cases but often singe-tenant designs
- Clouds built on sharing and multi-tenancy
 ☐ High utilization
 ☐ Elevible provisioning
 - Flexible provisioning
 - □ Load isolation and QoS guarantees

Providing multi-tenancy with FPGAs

Virtualization

- General purpose (PR)
- Few tenants
- Trades off functionality
- Course grained resource alloc.
- Tenants "bring" applications

Multi-tenant applications

- Domain-specific
- Many tenants
- Trades off performance (?)
- Fine grained resource alloc.
- Provider "brings" application

Multi-tenant application as a service

Key-value store

- Widely deployed in the cloud and datacenters
- Different tradeoffs but similar interfaces, e.g.:
 - Memcached caching, no replication, latencyoptimized, main-memory
 - Amazon S3 BLOB store, replicated, BW-optimized, needs large capacity

Кеу	Value
K1	AAA,BBB,CCC
K2	AAA,BBB
K3	AAA,DDD
K4	AAA,2,01/01/2015
K5	3,ZZZ,5623

Building a multi-tenant KVS (Multes)

- Area well studied in related work
 - Several pipelined designs, all saturate network link
 - Caribou: Interfaces and functionality similar to SW [VLDB17]
 - FPGA can provide replication for fault-tolerance [NSDI16]
- Requirements for multi-tenancy:
 - Performance isolation
 - Data isolation
 - Flexibility in resource allocation (focus on network bandwidth)
 - Efficient use of resources regardless of number of tenants

[VLDB17] Z. István, D. Sidler, G. Alonso Caribou: Intelligent Distributed Storage.[NSDI16] Z. István, D. Sidler, G. Alonso, M. Vukolic: Consensus in a Box: Inexpensive Coordination in Hardware.

Designing for multi-tenancy

- Caribou is composed of four modules
 - Requests can take various routes
 - Some traffic is inter-node
 - Hard to reason about load interactions!
- Multes: Reorganized pipeline to ensure all requests take same path (1)
 - Hash table implements parts of the replication log features (multi-version)
 - More coupling between modules (opcodes)

Token buckets

- Commonly used in networking scenarios
 - Max. number of tokens (D), adding C tokens every T cycles
 - Limits data rate, burst size
- Buffer space on the FPGA?
 - Queue commands <u>before</u> data movement
- Token buckets can be configured with no overhead at runtime (2)
 - Per-tenant allocations controlled by software

Replicated KVS

• Caribou implements inter-FPGA replication (leader based algorithm)

Having multiple roles

- Control state machine at heart of replication protocol
 - Data and control handled separately
- Multiple copies not an option
 - Complex logic + plumbing
- SM extended to store state for each tenant – can context switch per each packet (3)
 - Not all states need tenant context
 - Latency inside SM not on critical path
 - Now in registers, but could use BRAMs to store state

Evaluation of Multes

- Multiple Xilinx VC709s connected to a 10Gbps switch
- 9 load generating machines, Go-based benchmarking tool
 - Tenants connect to different TCP port numbers (e.g. 2880, 2881, ...)

 Multes offers flexible multi-tenancy while efficiently using the network link

No performance loss due to multi-tenancy

• Read-only throughput on a single node

Load isolation

- Replicated write latency of Tenant₀ (group = 3)
 - Additional tenants using their full read bandwidth (1/8 of 10Gbps)

Resource Usage: Small cost for sharing

No. of max. supported tenants in Multes

Thoughts on the future

Platform-as-a-service

- Customize KVS with tenant-defined processing for different "flavors"
- Combining multi-tenant application with small PR regions
 - Simple streaming interfaces can use HLS, OpenCL, etc.
 - Misbehaving PR region does not impact others

Conclusion

Multes: multi-tenant KVS service that doesn't sacrifice performance Project on Github: https://github.com/fpgasystems/caribou

Relied on three techniques:

- 1) Single-pipeline architecture and traffic shapers \rightarrow no load interaction
- 2) Runtime-parameterization of control modules \rightarrow flexible allocations
- "Contexts" in controlling state machines → no overhead when switching between tenants
- \rightarrow Applicable to many network-facing applications on FPGAs