
Providing Multi-tenant Services with FPGAs:
Case Study on a Key-Value Store

Zsolt István Gustavo Alonso Ankit Singla
Systems Group, Department of Computer Science, ETH Zürich, Switzerland

{first.lastname}@inf.ethz.ch

Abstract—FPGAs can be used to speed up computation and
data management tasks in various application domains. In
cloud settings, however, high utilization is as important as high
performance. In software it is common to co-locate different
tenants’ workloads on the same servers to increase utilization.
Sharing an FPGA is more complex because applications take
up physical space on the chip. Even though it is possible to
physically partition the FPGA, tenants can have widely different
requirements and their needs can also fluctuate over time. In this
paper, we take a different approach and provide flexibility to the
tenants who are interested in the same type of application but
have different workloads and quality of service requirements. We
demonstrate our approach of multi-tenant design using a key-
value store service but the ideas generalize to other network-
facing services as well.

A key challenge of multi-tenancy is to efficiently share the
underlying hardware while enforcing strict data and performance
isolation between tenants. In this paper we demonstrate that, by
following a single-pipeline design principle, it is possible to control
each tenant’s share of network bandwidth and computational
resources even for complex, distributed operations. Furthermore,
we show how state-machine based logic on the FPGA can be made
tenant-aware without introducing significant context-switching
overhead. Finally, our hardware design provides flexibility for
changing per-tenant shares, allowing the same circuit to be used
by one or multiple tenants without performance loss.

I. INTRODUCTION

Stagnating multi-core CPU performance has led to a greater
push for hardware acceleration. FPGAs, for instance, are being
used for both data processing and data management tasks at
various levels of the datacenter architecture [1]. The adoption
of FPGAs in the cloud, however, brings challenges, including
keeping the utilization high to ensure economic feasibility.

One way of sharing FPGAs is by time-multiplexing or
partitioning the logic resources among users. This has lead
to a line of research into “virtualized” FPGAs [2]–[4] that
use a software framework, e.g., OpenStack, and a harness on
the FPGA to expose several programmable regions. However,
this approach incurs significant resource overhead on the
chip, especially in case the tenants use the same building
blocks. Further, splitting up the FPGA into several regions
reduces the flexibility of providing different levels of service
or functionality to tenants.

An alternative way of tackling high utilization is to take
a service-centric view, exposing the joint implementation of
an application (or the service) to a number of tenants, as
sketched in Figure 1. Services such as storage and machine
learning are widely used, and accelerating them with FPGAs

Fig. 1. A multi-tenant design on the FPGA contains only a single instance
of the application, composed of several modules, some of which keep per-
tenant information. The memory/storage attached to the FPGA is partitioned
between tenants. Each tenant can have many clients issuing requests.

is attractive both for clients and cloud providers. Benefiting
from this approach requires addressing two key challenges:
first, isolation between tenants, both in terms of data and
performance, and second, runtime flexibility in dividing the
available bandwidth and compute resources among tenants.

In this work we show how the above challenges can be
tackled for a distributed key-value store built with FPGA. We
demonstrate how to use a single, multi-tenant application to
service concurrent tenants while, at the same time, utilizing
the FPGA resources efficiently and offering rich functionality.
Our prototype system, Multes, is based on Caribou [5], an
open source replicated key-value store that provides high
throughput, low latency access to data. The added multi-tenant
functionality does not reduce performance and requires only
modest logic resources in exchange for flexible sharing of the
FPGA among tenants. The techniques used in Multes beyond
our example application and could be used in other network-
facing services constrained by data movement as well. They
can be summarized as follows:

• Re-architecting the application into a single pipeline
enables the use of common algorithms from networking
(token buckets) to ensure that each tenant uses only their
allocated share of the resources. This applies both to
client-facing operations (e.g., key lookups) and to dis-
tributed operations as well (e.g., the replication protocol).

• For modules that implement event-driven state ma-
chines (e.g., protocol controllers), multi-tenancy can be
achieved without circuit duplication by externalizing
tenant-specific state into registers or on-chip memory.

• Modules expose parameters that are not hard-coded and
can be modified at runtime, offering flexibility in the
number of active tenants and replication policies.



II. BACKGROUND

A. FPGAs in the Cloud and Datacenter
There are several options for deploying FPGAs in the

datacenter and the cloud. One is to use the FPGA as a PCIe-
attached accelerator, such as the ones offered in Amazon F1 in-
stances. This deployment option is well suited for implement-
ing traditional accelerators, but does not allow the FPGAs to
access the network directly. Intel’s Xeon+FPGA platform [6]
and IBM’s CAPI solutions are similar to the accelerator model
but, because they offer cache-coherent access to the CPU’s
memory, they allow much finer-grained interaction between
hardware and software.

An other option for deploying FPGAs, and the one we
focus on in this work, is to expose them directly over the
network, either as stand-alone nodes [4], or coupled with a
host machine. The latter option is already in widespread use
in Microsoft Azure for offloading virtual network tasks: in
the Catapult project [7] FPGAs act as a bump-on-the-wire for
the server machine’s networking interface while also being
accessible over PCIe. Even today, the leftover bandwidth and
logic area of the FPGAs can be used to provide additional
services (for instance AI acceleration [8] or data caching [9]).

B. Key-value Stores and Caribou
Almost all distributed data processing applications require

either a storage or a caching layer. As a result, key-value stores
(KVSs) such as memcached and Redis and object stores such
as Amazon S3, are widely used in the cloud. Most KVSs are
built around a random access data structure that holds keys
and pointers to values. These values can reside on disk or in
main memory, and can be of various sizes. While different
KVSs may offer different features, they all need to support
read and write (get and set) operations to manipulate key-
value pairs. Although there is already much work on using
FPGAs to accelerate these applications, ranging from partial
offloading [10], to standalone solutions [5], [9], these works
do not address multi-tenancy as part of the circuit design.

We build Multes by extending Caribou [5], an open
source system that offers the functionality needed for stand-
alone deployments: reliable networking to many clients using
TCP/IP [11], a flexible hash table with memory allocator, and
replication among Caribou nodes for fault tolerance [12]. Fault
tolerance is a requirement in the cloud, to ensure that even in
the face of node failures or network partitions, no user data is
lost. Caribou implements a leader-based replication scheme
that uses an atomic broadcast protocol [13] to ensure that
all participating nodes have the same state. This operation is
latency-sensitive as it requires multiple network round-trips.

The interface to Caribou consists of operations to read and
write (get and set) a value corresponding to a key, to read
the value and apply a filtering operation, or to retrieve all
data in the storage (scan) and apply a filtering operation on
it. Its implementation is optimized for smaller value accesses
(32-512 B), thus the multi-tenant variant has to be able to
switch between tenants with high frequency to achieve line-
rate performance.

Fig. 2. In the original Caribou design, depending on the operation type,
messages might be sent directly from the replication module to the networking
stack, making traffic shaping more difficult. In Multes all requests follow the
same internal path and traffic shaping techniques can be applied consistently.

III. SYSTEM OVERVIEW

Multes provides functionality similar to that of Caribou
but in a multi-tenant design. The FPGA is configured with a
bitstream that has been provisioned for a maximum number of
tenants (design-time parameter) and at runtime the behavior of
the key-value store can be adjusted without reprogramming.
Tenants can be added or removed, their allocations can be
modified, their dataset can be reset and their replication groups
can be configured independently.

We modified and extended Caribou in three ways: 1) modi-
fied the hash table to store keys belonging to different tenants
in different parts of the memory, 2) modified the replication
module to support different replication groups for each tenant
by switching the state of the algorithm on a per-request basis,
3) added traffic shapers to ensure that no tenant uses more
bandwidth or has more outstanding requests than it has been
allotted. For space reasons, in this paper we focus on network
bandwidth allocation and sharing, but is possible to apply
similar policies on DRAM or flash memory bandwidth as well
inside the KVS.

IV. DESIGNING FOR MULTI-TENANCY

A. Applications as a Single Pipeline

In a multi-tenant setting our goal is to ensure that the
application on the FPGA and the networking/memory re-
sources are shared fairly among requests belonging to different
tenants. In order to achieve this, we need to limit the rate
at which requests of each tenant can enter the application,
the output network bandwidth they generate, and the number
of outstanding requests they each have inside the application.
Caribou’s original design, however, makes it difficult to reason
about these, mainly because its internal modules form multiple
pipelines where messages can pass through (Figure 2). The
replication module is connected directly to the networking
block, and can send and receive replication-related messages
bypassing other modules. Furthermore, a single replication
message can result in sending multiple network packets,
possibly carrying large payloads. In Multes, we reorganized the
key-value store logic into a single pipeline that handles both



Fig. 3. Each traffic shaping module is composed up of FIFO buffers and
Token Buckets. Each tenant’s share can be configured independently, and
data is dequeued with a round-robin discipline.

replicated and non-replicated operations. This reorganization
of logic blocks enables reasoning about the amount of data
entering and leaving each pipeline stage for each tenant.

B. Traffic Shaping with Token Buckets

We added two traffic shapers to the pipeline that ensure
that both the incoming traffic (and queued requests) and
outgoing traffic respect each tenant’s allocated share. The first
traffic shaper is after the TCP module’s output, accepting
and queuing messages received over the network. The second
traffic shaper is positioned before the value management unit.
Most operations that send data out over the network arrive at
the value manager as small command words, pointing to data
to be retrieved from memory. Because on FPGAs the on-chip
buffer space is much smaller than the off-chip memory, it is
more efficient to queue these command words and not the full
network packets after the value manager.

Traffic shaping is achieved by a module built from multiple
token buckets (Figure 3). Each token bucket belongs to a tenant
and is composed of a queue and logic to decide whether letting
a request through would violate the tenant’s allocated share.
This decision is taken based on the availability of tokens. Each
token corresponds to an 8 byte transfer over the network, and
they are refilled periodically. Tokens are accumulated only up
to a limit that determines the largest burst a tenant can send out
over the network. The refill rate and the limit can be changed
on a control interface at run-time.

Each request (command word) encodes how much data it
will send over the network (either by already having data
associated with it, or by containing a pointer to the value area).
This information is used by the token bucket and is provided
by (a) the networking module (for incoming packets), (b) the
hash table (for get operations), or (c) the replication control
state machine (for proposal and write operations). Since there
are separate queues per tenant, reordering can happen across
tenants, but each tenant will see the same behavior as without
the token buckets. Requests are dequeued only if there are
enough tokens available. Requests are multiplexed onto the
output in a round-robin manner. In case a tenant’s queue fills
up, requests are dropped until there is enough space in the

Fig. 4. The original atomic broadcast state machine has been augmented to
multiplex between the state of different tenants on a per event/message basis.
The switching happens without additional overhead in terms of latency.

queue. This can only happen in the first traffic shaper module,
because the FIFOs of the second module are sized as to hold
the maximum number of requests per tenant allowed to enter
the pipeline.

Our current prototype uses a special operation in the key-
value store to encode the new allocation for a specific tenant.
The two traffic shapers can also be configured independently.
This makes it possible to switch the key-value store from
multi-tenant to single tenant mode, or to provide a “pre-
mium” service to a specific tenant. Furthermore, this could
be combined with datacenter-wide load balancing or traffic
management decisions, similar to the approach in [14].

C. Running Multiple Replication Groups

In order to make the key-value store multi-tenant without
losing its reliability guarantees, in Multes, the replication mod-
ule had to be modified to handle different tenants at the same
time because the original design only allows participating in
a single replication group.

The replication module is based on our earlier work on
atomic broadcast [12] and its behavior is driven by a large
state machine. We extended the control state machine with
tenant information keeping its core algorithms unchanged.
This is feasible because the controller of the atomic broadcast
module is event-driven, enabling the use on-chip memory
and registers to implement no-overhead “context switching”
between tenants as shown in Figure 4.

An additional reason why the original design is ill-suited
for sharing is that it relies on a data structure to store
pending proposals that is separate from the hash table and
value area. Originally this data structure is append-only and
does not require memory allocation. With multiple tenants
either memory allocation has to be implemented for this data
structure (to avoid memory waste) or their proposals have to
be interleaved. The latter option is undesirable because the
behavior in one group could negatively impact other groups.
In Multes we move most of the functionality of this data
structure into the hash table by implementing multi-versioned
entries: Each key in the hash table has a “current” and a
“next” pointer to the value area. This allows staging pending
changes and, upon a commit, making them visible and freeing
the memory location of the previous value. The data structure



2 4 6 8
0

5

10

15

Number of active tenants

M
ill

io
n

R
ea

d
O

ps
./s

VS=16B
VS=64B
VS=256B
Caribou

Fig. 5. Supporting multiple tenants does not introduce significant overhead in
throughput, regardless of the value size (VS). The throughput with 8 tenants
is close to Caribou and the theoretical maximum over 10Gbps (dashed lines).

that keeps track of proposals in the replication block becomes
much simpler (as it only needs to store fixed sizes entries the
modified key), fits in small BRAM blocks, and can be looked
up in constant time.

Even though this redesign of the way proposed values are
stored will result in keeping only the most recent version,
this is compatible with the non-versioned nature of the service
being exposed to the clients. When a newly joined node needs
to be synchronized, the state of they key-value store can be
copied over by retrieving all keys of the particular tenant and
inserting them on the other node.

D. Network Traffic and Data Isolation

Tenants are separated in the TCP/IP module by opening
several ports to listen on. Requests are tagged with the port
number they are received on. Authentication and access control
is orthogonal to this work and network-level rules can be used
to, for instance, ensure that only clients belonging to a specific
tenant can access the FPGA nodes over a specific TCP port.
The design does not require changes to the client protocol and
tenants can use different port numbers on different nodes.

We achieve data separation by modifying the hash table
module to partition the memory area used for keys among
tenants. In our design, each tenant receives a partition of the
hash table with an equal number of slots for keys. Even though
separation could be also achieved by appending the tenant ID
to the key, mixing different tenant’s keys in the same data
structure would make it less efficient to copy or reset data on
a per-tenant basis. Furthermore, hash collisions could impact
performance negatively.

To ensure that the traffic generated by the replication blocks
is also subject to the tenant’s limits, instead of using a
single replication-specific TCP/IP port and adding meta-data
to requests to represent which tenant they belong to, the
replication module sets up connections for each replication
group using the port assigned to the particular tenant. As a
result, any replication-related messages that are sent between
FPGAs are also managed by the traffic shapers.

V. EVALUATION

We evaluated Multes using Xilinx VC709 boards connected
to a 10Gbps switch. Each board has a Xilinx XC7VX690T-2

1 2 3 4 5
0

1

2

3

4

5

Number of active tenants

M
ill

io
n

R
ea

d
O

ps
./s

Aggregate
Tenant0 (50%)

Fig. 6. Even with unequal tenant shares, no bandwidth is wasted (Shares:
T0=50%, others=12.5% each, Value: 256B, Dashed line: theoretical max.)

FPGA and 8 GBs of DDR3 memory. Software clients are
written in Go (based on the clients of Caribou) and run on
Debian Linux on up to 9 machines with dual-socket Xeon
E5-2630 v3 CPUs processors.

A. Performance Isolation

One of the biggest challenges in providing a multi-tenant
service is ensuring that the network bandwidth is efficiently
utilized even if tenants issue concurrent commands. We mea-
sure the throughput of the system with increasing number of
tenants and demonstrate that the token bucket mechanism does
not introduce significant overhead. In Figure 5 we show the
behavior for an eight tenant setup with a read-only workload
where each tenant (T0-T7) is allowed to use 12.5% of the
bandwidth. As expected, throughput increases linearly follow-
ing the ideal trend-line. There is an exception for the smallest
value size (16B), but the overhead doesn’t come from the
token buckets. The source of the overhead is in Caribou’s
original design and, as seen in Figure 5, the points measured
for Caribou coincide with Multes.

Even if tenants are allocated different fractions of the
bandwidth, the behavior follows the same trend. In Figure 6
we show throughput for a read-only workload, where the first
tenant (T0) has access to 50% of the output bandwidth, and
the others only 12.5% each. As we increase the number of
tenants the used bandwidth of the node increases and with
five tenants we reach the same throughput as in Figure 5.

In addition to isolating tenants in terms of throughput, the
design of Multes is successful in reducing interaction between
response times as well. The reason for this is twofold. On
the one hand, the first traffic shaper limits the number of
outstanding requests per tenant to ensure that an incoming
request does not need to queue behind too many operations in
the hash table.

On the other hand, the second traffic shaper ensures that
tenants can send their share of responses. To demonstrate
response time isolation, we executed an experiment in which
T0’s clients are sending replicated write requests to Multes,
while the other tenants are reading at their maximum rate.
We chose replicated writes because they are more sensitive to
latency fluctuations than simple read requests. We measured
latencies on the leader node to remove artifacts of the client’s
software stack. As Figure 7 shows, even if all other tenants



0 5 10 15 20
0

0.25

0.5

0.75

1

Atomic broadcast on leader [us]

C
D

F
Alone

+3
+5
+7

Fig. 7. The time for a atomic broadcast round increases only marginally
when Tenant0’s leader node is also handling read requests for up to seven
other tenants, at their maximum allowed bandwidth.

16 64 128 256
0

1

2

3

4

Value size [B]M
ill

io
n

R
ep

l.
W

ri
te

s/
s

T=3 (Diff. leaders)
T=3 (Same leader)
T=1 (One leader)

Fig. 8. Multes is limited in throughput for single-tenant (single leader) setups
by the replication logic. If the leaders reside on different nodes, throughput
close to the theoretical maximum (dashed line) can be achieved.

fully utilize their share on the leader node (reading at an
aggregated 8.75Gbps), the atomic broadcast times stay within
microseconds of the isolated case.

B. Multiple Replication Groups

We measured the maximum atomic broadcast rate (repli-
cated writes) achievable by Multes, to ensure that it delivers
similar performance to the original implementation in Caribou.
We first measure performance using a single tenant (T=1)
with 100% bandwidth allocation that issues replicated write
requests of increasing sizes for a group of three nodes (one
node is the leader, the others followers). As shown in Figure 8,
the atomic broadcast rate reaches almost 1.9M operations/s
for small values (16 B and 64 B), which is within 80% of the
numbers measured for Caribou for a similar key-value size
combination. This difference is expected because our modified
design performs more memory allocations/deallocations. For
larger values, Multes is able to saturate the full network
bandwidth and achieves equal throughput to Caribou.

We repeat the experiment with three tenants (T=3), each of
them with access to 33% of the bandwidth on all nodes, but
using the same node as a leader for all three. The throughput
is bottlenecked by the leader, and is identical to the single-
tenant case. If we configure the replication groups so that
their leaders reside on different nodes (each node is the leader
for one group, and follower for two others), the performance
is bottlenecked by the network allocations, as the replication
control units are fast enough to keep up with the load. This
demonstrates that the same nodes can be used in multiple roles
without reducing performance.

TABLE I
RESOURCE CONSUMPTION OF EACH MODULE WITH 8 AND 16 TENANT
CONFIGURATIONS, COMPARED TO THE NON-MULTI-TENANT DESIGN.

Module Logic slices Overhead BRAMs Overhead
DRAM controller 25k (23%) 0 128 (9%) 0
Networking 11k (10%) 0 151 (10%) 0
Memory allocation 2.9k (2.7%) 0 8 (<1%) 0
Hashtable 1.8k (1.7%) -2.1k 150 (10%) +31
Replication (T=8) 4.3k (4%) +1.1k 18 (1.2%) -47
Traffic Shapers (T=8) 3k (2.8%) n/a 60 (4.1%) n/a
Replication (T=16) 5.8k (5.4%) +2.6k 18 (1.2%) -47
Traffic Shapers (T=16) 5.7k (5.3%) n/a 112 (7.6%) n/a

C. Resource Consumption

The overhead of adding token buckets to the design and
making the replication module tenant-aware is small and
increases linearly with the supported number of tenants. In
Table I we break down how the different modules changed
in size compared to Caribou. The size of the hash table in
Multes is smaller than in Caribou because we disabled the scan
functionality. Currently, without processing, the entire design
consumes 48k (53k) logic slices and 515 (610) BRAMs for
8 (16) tenants.

A single token bucket inside a traffic shaper consumes
around 170 logic slices (less than 0.16% of the evaluation
device). The state kept inside the replication module takes up
in the order of 150 slices (less than 0.15%) per tenant. These
latter data structures are mapped to distributed RAM in our
current prototype to allow single cycle read-update operations,
but in the future, if more space for computation is needed,
they could be organized into BRAMs without reducing the
performance of the replication control machine significantly.

VI. RELATED WORK

There is increasing interest in providing multiple users with
concurrent access to the same set of FPGAs in a cloud setting,
with most of the related work focusing on “virtualizing”
FPGAs [2]–[4]. Byma et al. [2], for instance, demonstrated that
it is possible to offer FPGAs as a generic cloud resource and
configure them remotely using OpenStack, with the simplicity
of booting up a regular virtual machine.

The work of Fahmy et al. [3] exposes four programmable
regions on a PCIe-attached FPGA. Their proposal is evaluated
with various data analytics applications, but the overhead of
virtualization reduces the energy efficiency (performance/W)
of the chosen FPGA five-fold when compared to a non-
virtualized baseline.

Centaur [15] also exposes several programmable regions of
the FPGA on the Intel Xeon+FPGA platform. It is designed
with domain-specific use in mind, namely database accelera-
tion. As a result, its on-chip management overhead is small
and it exposes the programmable regions through a simple
“hardware thread” interface.

Sharing an FPGA accelerator between multiple software
threads is explored in the recent work by Chen et al. [16],
that exposes acceleration as a service to Apache Spark. In



that work, however, all threads belong conceptually to a single
tenant and load isolation is not required.

Overall, virtualization of FPGAs allows for arbitrary ap-
plications per tenant, but chip space is not guaranteed to be
used efficiently. Instead, this work explores an approach where
tenants share a common application with rich functionality that
has been designed to with multi-tenancy in mind, using chip
space more efficiently.

Software systems have long explored the challenges of
providing multi-tenancy, but usually their quality of service
guarantees are coarser than what an FPGA can offer. Multi-
tenancy has also been explored in the context of distributed
storage, e.g., in Pisces [14] and Moirai [17]. Typically, these
systems combine multiple techniques to isolate tenants from
each other and ensure weighted sharing including both node-
level load balancing techniques and the use of a higher level
controller that monitors the distributed state and re-balances
load if necessary. Using such a controller would also be
beneficial for Multes to orchestrate the nodes and manage the
tenant-specific bandwidth allocations.

Memshare [18] focuses on an other challenge: sharing
memory in key-value stores used for caching. Its internal
data structures ensure that each tenant can be guaranteed a
certain amount of memory space, and uses the leftover space
to increase combined cache hit rates for all tenants. This
highlights that beyond isolating tenants from each other, there
are also opportunities in using left-over resources to benefit
all tenants. Multes uses a static allocation of memory space
for keys, and could benefit from a more elastic approach.

VII. FUTURE EXPLORATION

A. Application-aware TCP Stack

We designed the application pipeline such that it enforces
each tenant’s fair share both when receiving and sending out
data. The TCP stack, however, is external to our design and,
in case packets are dropped or incast congestion happens, it
could end up sending more messages for particular tenants,
violating the pre-determined bandwidth limits. One solution to
this limitation is to integrate the TCP/IP more tightly with the
application on the FPGA, capturing the retransmission events
of the network stack in our traffic shaper and resending data
from memory location accessible from the application.

B. Partial Reconfiguration

Multes solves two large challenges of multi-tenancy, namely
data separation and performance isolation but, in the current
design, tenants have to share the same set of pre-defined
filtering units on the FPGA. There is an opportunity for
tenant-specific processing using partial reconfiguration where
tenants could offload to the FPGA processing snippets of
their choice. These snippets only need to implement a simple
streaming interface and therefore can be expressed in high
level languages, and their behavior can be verified easier than
general purpose FPGA logic. This approach would benefit
from the advantages of both a “virtualized” FPGA and a multi-
tenant application.

VIII. CONCLUSION

We explored how flexible multi-tenant services can be
provided using a single application pipeline on the FPGA.
Using a key-value store as an example, we have shown that
it is possible to apply simple traffic shaping techniques from
networking to a complex distributed application. The solution
is flexible: tenant limits can be changed at runtime without
requiring reprogramming, and the nodes can be configured
with different replication roles by different tenants, making
replication groups independent across tenants.

Multes provides performance very similar to that of Caribou,
the system it extends and modifies, reaching more than 10
million KVS operations per second. Even when replicating
writes to three nodes from a single leader, it reacher almost
2 million ops/s. In contrast to Caribou, in this work we show
that when different tenants use different nodes as leaders
for replication, close to line-rate throughput can be achieved.
Providing multi-tenant behavior with 16 tenants requires less
than 10% of additional chip space when compared to Caribou.

ACKNOWLEDGMENTS

Part of this work is funded by Microsoft through the MR-ETHZ-
EPFL Joint Research Center. We would like to thank Xilinx for the
generous donation of the FPGA boards used in the paper.

REFERENCES

[1] C. Kachris and D. Soudris, “A survey on reconfigurable accelerators for
cloud computing,” in FPL’16. IEEE, 2016.

[2] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“FPGAs in the cloud: Booting virtualized hardware accelerators with
openstack,” in FCCM’14. IEEE, 2014.

[3] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA accelerators
for efficient cloud computing,” in Cloud Computing Technology and
Science (CloudCom’15). IEEE, 2015.

[4] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling
FPGAs in hyperscale data centers,” in UIC-ATC-ScalCom. IEEE, 2015.

[5] Z. István, D. Sidler, and G. Alonso, “Caribou: intelligent distributed
storage,” Proc. of the VLDB Endowment, vol. 10, no. 11, 2017.

[6] P. Gupta, “Accelerating datacenter workloads,” in FPL’16, 2016.
[7] A. M. Caulfield, E. S. Chung, et al., “A cloud-scale acceleration

architecture,” in MICRO’16. IEEE, 2016.
[8] D. Lo et al., “Accelerating persistent neural networks at datacenter

scale,” in ML Systems Workshop at NIPS’17, 2017.
[9] B. Li, Z. Ruan, et al., “Kv-direct: High-performance in-memory key-

value store with programmable nic,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles. ACM, 2017.

[10] K. Lim, D. Meisner, et al., “Thin servers with smart pipes: designing soc
accelerators for memcached,” in ACM SIGARCH Computer Architecture
News, vol. 41, no. 3. ACM, 2013.

[11] D. Sidler, G. Alonso, et al., “Scalable 10gbps tcp/ip stack architecture
for reconfigurable hardware,” in FCCM’15. IEEE, 2015.

[12] Z. István, D. Sidler, et al., “Consensus in a box: Inexpensive coordina-
tion in hardware.” in NSDI, 2016.

[13] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in DSN’11.

[14] D. Shue, M. J. Freedman, and A. Shaikh, “Performance isolation and
fairness for multi-tenant cloud storage.” in OSDI’12, 2012.

[15] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A framework
for hybrid CPU-FPGA databases,” in FCCM’17. IEEE, 2017.

[16] Y.-T. Chen, J. Cong, and other, “When Apache Spark meets FPGAs:
a case study for next-generation DNA sequencing acceleration,” in
USENIX HotCloud’16, 2016.

[17] I. Stefanovici, E. Thereska, et al., “Software-defined caching: Managing
caches in multi-tenant data centers,” in Proceedings of the Sixth ACM
Symposium on Cloud Computing. ACM, 2015.

[18] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman, “Memshare: a
dynamic multi-tenant key-value cache,” in Usenix ATC, 2017.


	Introduction
	Background
	FPGAs in the Cloud and Datacenter
	Key-value Stores and Caribou

	System Overview
	Designing for Multi-tenancy
	Applications as a Single Pipeline
	Traffic Shaping with Token Buckets
	Running Multiple Replication Groups
	Network Traffic and Data Isolation

	Evaluation
	Performance Isolation
	Multiple Replication Groups
	Resource Consumption

	Related Work
	Future Exploration
	Application-aware TCP Stack
	Partial Reconfiguration

	Conclusion
	References

