A FLEXIBLE HASH TABLE DESIGN FOR 10GBPS KEY-VALUE STORES ON FPGAS

Zsolt Istvdn, Gustavo Alonso

Systems Group
Dept. of Computer Science
ETH Ziirich
{zistvan, alonso } @inf.ethz.ch

ABSTRACT

Common web infrastructure relies on distributed main mem-
ory key-value stores to reduce access load on databases, there
by improving both performance and scalability of web sites.
As standard cloud servers provide sub-linear scalability and
reduced power efficiency to these kinds of scale-out work-
loads, we have investigated a novel dataflow architecture for
key-value stores with the aid of FPGAs which can deliver
consistent 10Gbps throughput.

In this paper, we present the design of a novel hash table
which forms the centre piece of this dataflow architecture.
The fully pipelined design can sustain consistent 10Gbps
line-rate performance by deploying a concurrent mechanism
to handle hash collisions. We address problems such as
support for a broad range of key sizes without stalling the
pipeline through careful matching of lookup time with packet
reception time. Finally, the design is based on a scalable ar-
chitecture that can be easily parametrized to work with dif-
ferent memory types operating at different access speeds and
latencies.

We deployed this hash table in a memcached prototype
to index 2 million entries in 24GBytes of external DDR3
DRAM while sustaining 13 million requests per second for
UDP binary encoded memcached packets which is the max-
imum packet rate that can be achieved with memcached on
a 10Gbps link.

1. INTRODUCTION

Data centres grow each day both in sheer size and functional
diversity driven by the emergence of new, connected mobile
computing devices, an explosion in the volume of amor-
phous data captured and exchanged, and the rising popu-
larity of web services. In particular the databases that store
the actual content of web sites face scalability issues to sus-
tain the expected growth rate. To address this challenge, it
has become standard practice to use distributed in-memory
key-value stores, such as memcached!, as a caching layer

"http://www.memcached.org

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

Michaela Blott, Kees Vissers

Xilinx Inc.
Dublin, Ireland; San Jose, CA

{michaela.blott, kees.vissers } @xilinx.com

Hash Table | Value Store
Hash Value |>
_Addr. | | Addr. L
Key B Addr. B Value A
Hash
function Key A Addr. A Value B
Key C Addr. C Value C

Fig. 1. Hash table and value store

between web servers and databases [1]. The most popular
contents can be retrieved directly from one of these caches,
thereby alleviating the access load on the database. The
clients, which are typically the web servers, communicate
with the key-value store over a simple protocol, which builds
on variations of two commands: set and get. These allow for
the storage and retrieval of arbitrary binary data by request-
ing them through their corresponding key. Get operations
typically predominate in the application [2]. In the follow-
ing we refer to these commands as write and read.

As part of a broader research effort, we investigate a
dataflow architecture for key-value stores that can sustain
10Gbps line-rate consistently and brings significant latency
benefits through tight coupling of network interface, mem-
ory and compute resources [3]. We use FPGAs as imple-
mentation medium as the application demands a certain de-
gree of programmability. This is to customize hash func-
tion, hash table parameters, communication protocols and
memory and cache management strategies to individual use
cases. At the heart of this key-value store is a hash table,
which in essence determines the memory address of a value
as a function of an incoming key. This is achieved by first
applying the chosen hash function to the contents of a key to
produce an address in the table. From this location then, a
pointer to the address within the value storage area can be re-
trieved as is illustrated in Figure 1. By reducing a typically
large input key space to a small index space, two or more
different keys can potentially map to the same hash table
address. Resolving these so-called hash collisions can in-

troduce uncertainty in regards to response time, which con-
stitutes the main difficulty in achieving consistent line-rate
performance. Additional challenges include supporting keys
with a broad range of types and sizes while maximizing table
occupancy and enabling a large storage space with millions
of entries.

In this paper we present the chosen hash table archi-
tecture which sustains 10Gbps throughput independent of
packet sizes through its pipelined structure. A novel par-
allel lookup technique is employed to handle flexible key
sizes and collisions, while ensuring high memory utiliza-
tion. The architecture of the hash table is parametrized and
can in theory support millions of items. Our prototype im-
plementation demonstrates 2 million entries with a maxi-
mum key size of 168Bytes. The hash table occupies less
than 400MBytes which on our development platform leaves
23.6GBytes of DRAM for storing values. By using Bob
Jenkins’ lookup3 hash function [4], also present in the open
source memcached software, we can demonstrate excellent
hashing properties for different types of keys. Finally, the
design can adjust to different memory access speeds and la-
tencies thereby providing a certain amount of flexibility.

The rest of this paper is organized as follows: Section 2
discusses related work in hash tables on FPGAs. Section 3
provides the context of our work while Section 4 describes
our dataflow architecture, detailing the implementation of
the key modules. Prototype platform, experimental setup
and results are presented in Section 5 and conclusions can
be found in Section 6.

2. RELATED WORK

Hash tables provide an effective solution to the common
search problem of retrieving a value based on a key. The
main challenge presents itself in handling the case when
multiple keys map to the same hash index (hash collision)
while maintaining consistent throughput levels. This section
looks at some of the most common techniques to deal with
collisions in hardware. These stem mostly from the context
of network processing, with one exception which relates to
an alternative memcached implementation.

One well-known approach is referred to as perfect hash-
ing which in essence relies on the idea of customizing the
hash function itself such that for a previously known set of
input keys, collisions can be completely avoided (e.g. [5]).
The key benefit is that all read and write accesses to the hash
table can be done in O(1) time. However, this scheme is not
applicable in our use case as the incoming set of keys is dy-
namic and previously unknown.

Cuckoo hashing [6, 7] is a so called open addressing
variant in which items are stored in one of two possible lo-
cations. Reads are always answered in constant time, how-
ever writes pay potentially the cost of collisions: If both lo-

cations are taken, a greedy algorithm is used to reorganize
the table resulting in high response times. Although writes
are much less common than read operations in typical mem-
cached deployments, they can potentially block incoming
read requests from accessing the hash table thereby jeopar-
dizing line-rate performance. Consequently this approach
becomes unsuitable given our design goals.

An alternative way of resolving collisions is through
chaining: All keys that hash to the same index are stored in a
dynamically allocated list, often referred to as bucket, which
is linked to this index. The main advantage of chaining is
that it provides symmetric read and write performance. Op-
erations can be performed using a relatively constant num-
ber of memory accesses [6]. However, deviations from the
median response time can be potentially too large which
constitutes a challenge for pipelined hardware implementa-
tions. Often, the bucket size is limited to restrict the poten-
tial penalty. This approach is deployed in [8], which is the
only other known memcached implementation on an FPGA.
In contrast to our solution, Chalamalasetti et al use a central-
ized control architecture rather than our dataflow approach
and aim for low power rather than performance. An impor-
tant consequence of this architecture in regards to the hash
implementation is that in case of a read, multiple locations
have to be read and subsequently compared, yielding a much
lower performance. (The presented prototype operated at
1Gbps line rate.) Furthermore, the chosen hash table does
not support flexible key sizes.

As previously stated, chaining-inspired schemes are typ-
ically used in combination with an upper bound on the num-
ber of items that can map to the same hash index [9, 8],
thereby all items in a bucket can be accessed in parallel to
alleviate dependencies on memory latency. Our technique
builds onto this approach whereby we extend it to support
flexible key sizes, trading off storage efficiency for constant
access time.

It is possible to reduce the expected number of items in
buckets by deploying several hash functions and/or multiple
possible locations for items [10, 11, 9]. We chose to rely on
large bucket sizes, which equally reduces the probability of
an overflow, to ensure a more uniform hash table utilization
and simplify the circuit.

Sometimes, the above-mentioned techniques are com-
bined with an overflow buffer which holds all items that
cannot be stored because their respective buckets are full.
Typically these are realized with small Content Address-
able Memories (CAM) [9, 7]. In our case, however, the re-
quirement to support flexible and potentially very large keys
makes using CAMs as spill-over storage infeasible. As men-
tioned before, we simply support a larger bucket size per
hash index. Since the key-value store acts in most common
use cases as a cache for the database, read and write success
do not have to be guaranteed. Typically, it is acceptable that

10Gbps
Ethernet

UDP/TCP
Offload Engine
-
Request Parser| (-} Hash Table Value Store Response
o~ Formatter
! standardized \j
| AXi Stream

~—

Xilinx FPGA

DRAM
Controller

DRAM

Fig. 2. FPGA-based memcached server architecture

for operations targeting buckets with too many collisions a
cache miss or cache full is returned.

3. KEY-VALUE STORES IN FPGAS

As previously mentioned, this work is part of an ongoing
research effort [3] to explore dataflow architectures for key-
value stores with the aim of handling consistently 10Gbps
throughput while reducing latency and power consumption.
Currently, key-value store implementations are almost ex-
clusively utilizing x86 servers at their basis, although it is
well-established that they are not optimized for this kind
of workload. High interrupt rates from the TCP/IP stack
cause a high cycle per instruction (CPI) count. Further-
more, the processor’s last-level data cache, which consumes
as much as half of the entire processor die area, becomes in-
effective given the random-access nature and required mem-
ory size of the application, and with that causes consider-
able energy waste. Finally, throughput and latency are both
heavily impacted by the high latency of the communication
stack. To the best of our knowledge, Wiggins and Langston
present in [12] the most fine-tuned implementation available
in literature, demonstrating 3.15 million requests per second
(MRPS) with a median round-trip latency around 200mi-
croseconds (us) on a dual-socket Xeon ES processor.

In our efforts, we aim to show how through exploita-
tion of instruction- and task-level parallelism in the dataflow
architecture, the throughput can be significantly scaled and
higher power efficiency achieved. Furthermore, through the
tight integration of network, memory and compute we demon-
strate that the latency can be reduced by two orders of mag-
nitude. The proposed fully pipelined dataflow architecture
is shown in Figure 2. In this design, packets are received
from the network and processed by Ethernet and TCP/IP
offload engines. Then they are parsed and passed to the
hash table, which finds the location of a reserved memory
slot as a function of the incoming key. The value store then
reads or writes the respective values from the specified lo-
cation in memory. Finally the response formatter creates a

Packet buffer

Value addresses

Pre- Post-
. Hash Conc. . N .
—>{ processing —>{ . > > Read |—>| Compare [Expire [Write [processing

. function Control
(split) (merge)

Memory controller & arbiter ‘

Fig. 3. Hash table pipeline structure

response packet and returns it to the TCP/IP offload engine.
All blocks communicate over a standardized streaming in-
terface to facilitate a modular design and an iterative imple-
mentation process. The hash table forms a fundamental part
of this design and is described in more detail in the following
section.

4. IMPLEMENTATION

The main design goal for the hash table implementation, as
part of a key-value store, was to ensure line-rate processing
for all operations. This presents challenges in regards to
collision handling as was discussed in the previous sections.
In addition, the fact that key-value stores need to handle keys
and values of a large range of sizes and of different types
had to be taken into consideration. Per memcached protocol
specification, keys can be as large as 250Bytes, and values
are allowed to reach 1MByte in size. Finally, we aimed to
provide an implementation which is independent of memory
latency and access bandwidth to achieve a certain degree
of portability. In the following paragraphs we describe the
key implementation choices which allowed us to fulfil these
requirements.

4.1. Pipeline Structure

To achieve the aforementioned design goals, a pipelined ar-
chitecture was chosen. As such, data enters and leaves the
hash table through flow-control enabled streaming interfaces
based on the AXI-Streaming standard®>. Keys and values
are transmitted over these interfaces in parallel in 64bit data
buses. The meta-information associated with each request,
such as operation code, key and value length, are conveyed
over a third parallel channel.

As illustrated in Figure 3, the actual hash table logic sits
between the pre-processor and the post-processor. The pre-
processor extracts the key and relevant metadata from the
stream and stores the rest of the packet in a packet buffer,
and the post-processor merges the results from the hash ta-
ble back into the packet. First, the hash function calculates

2Specification at: http://infocenter.arm.com/help/
index. jsp?topic=/com.arm.doc.ihi005la/index.html

the address of the key in the hash table. The concurrency
control unit then ensures that there are no read-after-write
hazards in the pipeline by delaying conflicting keys. This is
an artefact of handling multiple requests concurrently. The
read unit issues the read commands to the memory and the
comparator compares the input key with the data coming
from memory. The expiration unit invalidates expired keys
based on an internal counter which keeps time in seconds.
Finally, the write unit is responsible for updating the hash
table for all writing operations such as inserts and deletes.
In addition, the write unit outputs the location of the value
in memory and its length for successful operations, or an
error code otherwise.

To achieve a decent memory usage efficiency, addresses
are dynamically allocated for the value store in different
block sizes. In our implementation, the external value store
management logic communicates with the write unit through
a simple queuing interface which provides free addresses for
different block sizes in parallel. Deleted addresses are re-
turned in a similar fashion to the external logic. Depending
on the operation, the write unit fetches or pushes the value
store addresses from their respective queues and updates the
keys’ data in the hash table accordingly.

4.2. Parallel Lookup with Flexible Keys

In the hash table we handle collisions with a variant of the
chaining method explained earlier. A list of constant length
is pre-allocated at each hash table address and for every in-
coming key, the entire list, or bucket, is retrieved from the
table and compared to the respective key in parallel. We
basically trade-off probability of collisions versus memory
bandwidth. With increasing bucket size, the probability of
collisions can be reduced. However, this is at the expense of
memory bandwidth. In essence, the available memory band-
width acts as an upper bound for the bucket size, because it
increases linearly with the number of parallel items.

If every hash table location would correspond to only
one memory burst access, in the following referred to as
memory line, then the maximum key size would depend on
the width of the memory interface. To support flexible key
sizes, we stripe keys over multiple memory lines. Thereby,
the retrieval and comparison of longer keys takes more mem-
ory accesses and with that a longer time. To ensure line-
rate operation, we match the read access bandwidth with
the incoming packet bandwidth. We guarantee that the time
it takes to retrieve keys from memory is smaller than the
amount of time it takes to transfer their corresponding pack-
ets over the network. This layout is shown in Figure 4. A
bucket is spread over one memory line, whereby each hash
item can span multiple lines. A hash item is composed of
1) a fixed size header, which contains the length of the key,
its expiration time and the pointer to the value store with the
value length, and 2) the key itself.

Parallel Items

[Comparison Key }—w \

Hash Address i

Hash Item

Key 1/2
Key 2/2

Hash Address i+1

Key 3/3

v

Memory Lines

Fig. 4. Hash table layout in memory

Vaiue T Valuel
addresses addresses
Compare E E Expire Write Key, value length,
L, Comlpa:ralor 0 l——>| Write Unit 0 '— valie store index
Cotnparator 7 l——>| Write Unit 7 |
Memory line

Memory line l

(8 stripes) (8 stripes),

Fig. 5. Parallel operation of compare, expire and write units

Although, this method of striping the keys over a number
of lines provides flexibility, it also leads to reduced storage
efficiency for small keys. However, since we use DRAM for
the hash table, we believe the density requirements to be less
critical. With less than 400MByte we can support 2 million
entries and 23.6GByte of storage.

The main use-case of the hash table is caching, therefore
if a key is not found within a bucket, it is declared a miss
and no further address lines are accessed. This way we can
guarantee constant access time to the hash table regardless
of its fill rate or contents, whereby we maximize the proba-
bility of a hit in the table by using a large bucket size, 8 to
be specific. In the next subsection we show that with a good
choice of hash function, and by not utilizing the hash table
to its full capacity, the number of lost items can be kept at a
minimum.

4.3. Flexible Handling of Keys and Memory

Implementing a hash table which offers flexibility both in
the number of parallel items and in the size of the keys poses
several challenges. The compare-expire-write stages of the
pipeline need to be able to handle keys arriving over mul-
tiple clock cycles, which have to be matched in parallel to
multiple keys that reside in a number of memory lines. On
our platform a memory line is 384Bytes in total, which cor-

responds to a burst length of 8 on a 384bit wide memory
interface. As illustrated in Figure 5, compare and expire
unit are split into parallel components to support the pro-
cessing of multiple hash items in parallel. The input key is
then broadcast to all comparators which merge the compare
and expire logic. The memory line is equally divided into
the various hash items whereby each one is routed to a dif-
ferent comparator. We refer to the part of a memory line that
belongs to one hash item in the following as a stripe. This
way the copies of the key can be compared concurrently to
the stripes of the memory. Each comparator produces three
result bits which represent whether the stripe matches the
input key, whether it holds an expired key, or whether it is
free. These result bits are forwarded to the write unit.

Similarly to compare and expire, the write unit is split
into stripe writers. For read operations, the stripe writer out-
puts the header of the key which contains the value address
and value length in bytes. This is then merged back into the
original packet. For write operations, the first stripe writer
with a free slot fetches a value store pointer from one of the
address queues, and then writes the key and its header to
the actual hash table residing in memory. For delete opera-
tions the pointer to the value is pushed into the deleted ad-
dress queue, and the hash table entry is erased by validating
the corresponding flag in the hash table. The value point-
ers of expired keys are handled in the same fashion. When
performing any write or delete operations, all addresses be-
longing to expired keys within the accessed line are pushed
into the deleted queue, and the hash table line is updated
with freed entries.

4.4. Hashing

We chose to implement the Bob Jenkins’ hash
function lookup3 [4] which is also used in the open source
software version of memcached and is well-known to work
effectively over a broad range of key types. This function
processes variable sized keys iteratively in 96bit chunks and
each chunk is split into three 32bit numbers which are added
to a set of state variables. Before the next chunk is read,
these state variables are mixed using addition, subtraction
and XOR operations. Due to the inherent feedback loop, the
hash function cannot be easily pipelined. Our implementa-
tion can consume a new 96bit word every 6 clock cycles.
To achieve line-rate throughput, 64bits have to be processed
every cycle. Since keys need to be padded to multiples of
96bits, six copies of this function are deployed in parallel in-
side the hash unit, and a round-robin scheme is utilized both
for distributing the keys and for collecting the hash values.
We evaluated the software version of the hash function
on synthetic keys based on the most common memcached
use cases described in [2]. The aim was to see to what level
the hash table could be filled before the hash function pro-
duces too many collisions. Figure 6 shows that by increasing

T T I
Ideal

16 slots]
8 slots
4 slots

1 slot

Actual fill percentage

0 10 20 30 40 50 60 70 80 90 100
Attempted fill percentage

Fig. 6. Percentage of successfully stored items in the hash
table as function of parallel lookup for the lookup3 function

Next key’s hash addr.

In pipeline?

Fig. 7. Concurrency control unit

the number of parallel items per address line, the effective
utilization of the hash table can be greatly increased. For
instance, with 8 parallel slots per memory line, the hash ta-
ble can be filled to 50% while keeping the percentage of
lost items well below 1%. As previously stated, maximizing
this parallelism makes sense, however the available memory
bandwidth defines the limits.

4.5. Address Conflicts and Concurrency Control

In order to protect against read-after-write hazards in the
pipeline we adopted an approach in which keys are blocked
before the read unit while a writing operation on the corre-
sponding hash address resides within one of the subsequent
pipeline stages. The previously mentioned concurrency con-
trol unit is in place between the hash and read units to handle
these conflicts.

For the implementation, we use a queue-like structure
as shown in Figure 7. Write and delete operations push
their addresses into this data structure when entering the
read phase, and pop their addresses upon leaving the write
phase. For each new incoming read operation, the latest
hash address is compared to all hash addresses that reside
within this queue structure to eliminate potential hazards.
The pipeline before the concurrency control unit is temporar-
ily stalled in case of a match. The number of keys which can

concurrently reside within the pipeline’s critical section de-
pends on the latency of the memory. Therefore, we have
parametrized this component such that it can be easily ad-
justed to match different access latencies of different mem-
ory types on different platforms. On our platform, for in-
stance, the average memory latency allows for a maximum
of 50 keys in this section. Of course, in real-world work-
loads most of these would be read operations, making read-
after-write conflicts rare. Furthermore, the pipeline is over-
provisioned and a buffer introduced to minimize the effect of
temporarily blocking the entrance to the next pipeline stage.
In the evaluation, we show that already for a minimal work-
ing set of 500 out of 1 million entries with typical read-write
distributions [2], the effects are not observable.

4.6. Memory Independence

The hash table implementation described in this paper can
be adjusted to support different types of memories and mem-
ory interfaces. As described in the previous section, the
compare-expire-write units can be adjusted to match the avail-

able memory bandwidth and interface width by splitting mem-

ory lines into a parametrizable number parts which are then
handled in parallel. Also, the concurrency control unit is
adjustable to memory latency. Furthermore, the design is
parametrized to support different maximum key sizes. This
does not require modifications to any of the pipeline stages
apart from the buffers. With that, we achieve an indepen-
dence of the memory interface and type, which creates a
certain degree of portability.

4.7. Memory Layout

Our chosen platform offers one single DDR3 DRAM inter-
face that has to be shared between the value store and the
hash table. Fundamentally, this implies almost a complete
random access pattern in address sequences resulting in a
relatively poor access performance. This is further aggra-
vated by the fact that the DRAM needs to be read and writ-
ten to update value store and hash table depending on the
given nature of the received operation, thereby introducing
inefficiencies due to the associated data bus turnaround. The
only possible optimizations were ensuring that hash items
and values reside within a single row and value store and
hash table do not interrupt each other while operating within
a suitable access sequence. The average data bus utilization
was measured to be around 20%.

5. EVALUATION

5.1. Platform and Experimental Setup

The hash table has been implemented on an FPGA-based
network adapter. The heart of the platform is a Xilinx

N UDP/TCP Memcached PCle® PCle® Host |
Ethernet MAC DMA cPU

Memory controller
Virtexé FPGA

V]
| 24GB DRAM ‘

Fig. 8. Memcached deployed on a Maxeler Workstation

Virtex6® SX475T chip, which is interconnected to a 10Gbps
Ethernet interface and 24GBs of DDR3 SDRAM (Figure 8).
The memory is accessed in 384bit words at 300MHz with
a burst size of 8. The FPGA board sits in a Maxeler work-
station with an Intel i7 quad-core processor and 16GBs of
memory. The FPGA and the host communicate through
pCIe® gen?2 x8. The hash table was evaluated both in sim-
ulation and in hardware as part of our memcached prototype,
whereby we relied on a Spirent C-1 network tester appliance
for performance testing. Performance numbers present were
measured with the UDP-based binary memcached protocol.

For experiments we deployed a hash table with a capac-
ity of 2 million items and a maximum key size of 168Bytes.
This key size was chosen so that every hash table entry spans
at most 8 memory lines. The table described above occupied
less than 400MBytes in DRAM, and was used to address the
remaining 23.6GBytes of memory allocated for the value
store.

5.2. Performance

This section shows that the hash table can meet the line-rate
requirement regardless of key size for both read and write
operations. Given our limit for maximum key size, we is-
sued read and write commands to random addresses with
key sizes ranging from 6 to 168Bytes in simulation with a
value size of 1Byte. Similarly, we ran hardware experiments
in which we measured the maximum throughput of the hash
table as part of the memcached prototype. Requests were
sent over UDP in the binary memcached format, yielding
packet sizes between 96 and 258Bytes. Given the minimal
packet size of 96Bytes, a maximum packet rate of 13MRPS
can be achieved, then the network is fully saturated. As
shown in Figure 9, the hash table on its own is overprovi-
sioned and can handle throughput beyond 10Gbps, servic-
ing a maximum packet rate of over 31MRPS. This over-
provisioning helps to accommodate for additional overhead
associated with resolving address conflicts.

Figure 9 also illustrates the average latency introduced
by the hash table on our evaluation platform. This number
is composed of a constant offset and a component which
increases linearly with the key size. The constant part ac-
counts for roughly 90 cycles of which 60 are a direct result
of the memory subsystem. Given a clock period of 6.4ns,

’é‘ 35 T T 240

S Simulation i m
= % Hardware (10Gbps) 220]
s 25 § Latency (Hardware) 7200 3
2 20 M : 180
8 S - %
2 15 160 =
o 10 S e 140 2
Q. - —] o
% 5 — 120 =
~ 0 100

20 40 60 80 100 120 140 160

Key size in bytes

Fig. 9. Measured latency and maximum read and write per-
formance of the hash table as function of key size

Flip-flops LUTs BRAMs
Pipeline w/o Hash | 13233 2%) | 11477 (4%) | 43 (4%)
Hash Unit 5169 (1%) 16518 (5%) | 24 2%)

[Total [18402 (3%) [27995 (9%) [67 (6%)]

Table 1. The hash table on a Virtex6 SX475T chip

this constant latency adds up to 0.58us. The hash function
constitutes the variable part of the latency, which grows in
steps with key size because the key has to be padded to mul-
tiples of 96bit words for hashing.

The numbers measured in Figure 9 correspond to work-
loads without address conflicts. In the presence of such con-
flicts, the concurrency control unit introduces backpressure
in the pipeline, lowering the maximum achievable perfor-
mance. On our platform for instance, the line-rate process-
ing goal may not be achieved for all key sizes if more than
5% of all operations are stalled despite the over-provisioned
throughput. We argue that for a hash table with 1 million
entries this is unlikely to happen. For this we assume that in
large hash tables there is a subset of addresses which are fre-
quently accessed with a uniform random distribution which
we refer to in the following as the working set. Further, M
stands for the maximum number of items in the critical sec-
tion (this is a function of the memory latency), and N for the
randomly accessed address lines in the hash table, the size of
the working set so to speak. Finally, the fraction of sets and
deletes in the operation mix is S. With this, the probability
of having a write operation in the critical section that con-
flicts with the current item in the concurrency control unit
can be expressed as: P.,; = 1 — (1 — % * S)M. Based
on this formula, and assuming common operation mixtures
described in [2], we can derive that for only a minimum of
N = 500 out of 1 million entries, the expected address con-
flict probability stays under 5% for most workloads and with
that the line-rate performance can be met.

5.3. Resource Consumption

Table 1 shows the resource consumption of the presented
setup. Overall, the hash table uses only a small fraction of

the chip, with the actual hash unit being its largest contrib-
utor. As explained in the previous sections, the size of the
hash table is independent of the number of items stored in
DRAM and has no effect on resource requirements. How-
ever the memory latency determines the size of the concur-
rency control unit. Additionally, the number of BRAMs
used for buffering depends on both the memory latency and
the maximum allowed key and value sizes.

6. CONCLUSION

In this paper we present the design and the implementa-
tion of a hash table for an FPGA-based memcached server.
We provide 10Gbps line-rate performance by pipelining the
hash table and deploying a parallel lookup technique in con-
junction with a fixed bucket size. By choosing a large bucket
size, we minimize the probability of cache misses/full events
at the expense of memory density. Given the usage of DRAM
we believe this to be an acceptable compromise. Further, we
handle a large range of key sizes by striping keys over multi-
ple memory lines and thereby matching memory read access
time with corresponding packet budgets. Furthermore, we
utilize a strong hash function to provide constant behaviour
regardless of the key contents. Finally, the hash table is
parametrizable in regards to memory latency and memory
access bandwidth, thereby making the implementation more
portable.

7. ACKNOWLEDGEMENTS

The authors would like to thank Louis Woods and Jens Teub-
ner from the Systems Group, and Oliver Pell, Rob Dimond
and Andrew McCaffrey from Maxeler Technologies for their
continued support in this project.

8. REFERENCES

[1] B. Fitzpatrick, “Distributed caching with memcached,” Linux
Journal, no. 124, pp. 72-74, 2004.

[2] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload analysis of a large-scale key-
value store,” in Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on
Measurement and Modeling of Computer Systems. ACM,
2012, pp. 53-64.

[3] M. Blott, K. Karras, L. Liu, Z. Istvan, J. Baer, and K. Vissers,
“Achieving 10gbps line-rate key-value stores with fpgas,” in
HotCloud’13. The 5th USENIX Workshop on Hot Topics in
Cloud Computing. USENIX, 2013.

[4] B. Jenkins, “Function for producing 32bit hashes for hash
table lookup,” http://burtleburtle.net/bob/c/lookup3.c, 2006.

[5] L Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis,
“A reconfigurable perfect-hashing scheme for packet inspec-

[6

—_

[7

—

(8]

[9

[

(10]

(1]

(12]

tion,” in Field Programmable Logic and Applications, 2005.
International Conference on. 1EEE, 2005, pp. 644-647.

R. Pagh and F. Rodler, “Cuckoo hashing,” Journal of Algo-
rithms, vol. 51, no. 2, pp. 122-144, 2004.

A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust
hashing: Cuckoo hashing with a stash,” SIAM Journal on
Computing, vol. 39, no. 4, pp. 1543-1561, 2009.

S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung,
P. Ranganathan, and M. Margala, “An fpga memcached appli-
ance,” in Proceedings of the ACM/SIGDA international sym-
posium on Field programmable gate arrays. ACM, 2013,
pp. 245-254.

M. Bando, N. S. Artan, and H. J. Chao, “Flashlook: 100-
gbps hash-tuned route lookup architecture,” in High Perfor-
mance Switching and Routing, 2009. HPSR 2009. Interna-
tional Conference on. 1EEE, 2009, pp. 1-8.

S. Kumar, J. Turner, and P. Crowley, “Peacock hashing: De-
terministic and updatable hashing for high performance net-
working,” in INFOCOM 2008. The 27th Conference on Com-
puter Communications. IEEE. 1EEE, 2008, pp. 101-105.

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced
allocations,” SIAM journal on computing, vol. 29, no. 1, pp.
180-200, 1999.

A. Wiggins and J. Langston, “Enhancing the scal-
ability of memcached,” http://software.intel.com/en-
us/articles/enhancing-the-scalability-of-memcached, 2012.

