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Abstract—Relational databases execute user queries through
operator trees, where each operator has a well defined interface
and a specific task (e.g., arithmetic function, pattern matching,
aggregation, etc.). Hardware acceleration of compute intensive
operators is a promising prospect but it comes with challenges.
Databases execute tens of thousands of different queries per
second. Thus, if only one specific instantiation of an operator
is supported by the accelerator, it will have little effect on the
overall workload.

In this paper we explore the tradeoff between resource
efficiency and expression complexity for an FPGA accelerator
targeting string-matching operators (LIKE and REGEXP LIKE
in SQL). This tradeoff is complex. For instance, the FPGA not
always wins: simple queries that can be answered from indexes
run faster on the CPU. On complex regular expressions, the
FPGA is faster but needs to be parametrized at runtime to be able
to support different queries. For very long patterns, the entire
expression might not fit into the FPGA circuit and a combined
mode CPU-FPGA must be chosen. We evaluate our design on a
heterogeneous multi-core machine in which the FPGA has cache
coherent access to the CPU memory. In addition to the string
matching circuit, we also show how to implement database page
parsing logic so as to be able to work directly on the same memory
data structures as the database engine.

I. INTRODUCTION

Relational databases are fundamental to large applications
and their design is an excellent example of balancing high
performance and specialization. User queries are expressed
in Structured Query Language (SQL), which provides the
abstraction of operators (selection, aggregation, joins, etc.).
The query optimizer turns queries into tree-like execution
plans and chooses from different implementations of operators
at runtime according to complex heuristics and cost functions.
The performance of queries executed often with different
input parameters can be increased with prepared statements,
i.e. by preparing the operator tree beforehand and filling in
parameters at execution time. This is how we approach FPGA
accelerators in this paper: the type of operation to be performed
is fixed but the actual parameters are only filled in at runtime.

One example of an operator that is very compute intensive
in software and could benefit from acceleration is the selection
of records based on a regular expression (using the LIKE
and REGEX LIKE operators in SQL). Software solutions on
CPUs, or even novel solutions on GPUs [1], become quickly
compute bound as the complexity of the expression increases.
FPGAs have long been used to speed up regular expressions
in networking, mostly for intrusion or event detection. Since
in those cases the regular expressions do not change fre-
quently, compiling them directly into non-deterministic finite

automaton (NFAs) on the FPGA is a common approach. The
seminal work of Sidhu and Prasanna [2] from 2001 has been
the foundation for most solutions following afterwards. By
contrast, databases do not operate on a fixed set of regular
expressions. Instead, expressions change frequently, e.g., with
each query. Another difference is that on a given data input,
only a single or a few regular expressions are evaluated rather
than hundreds. Finally, the notion of line-rate is different as the
solution needs to match or come close to the memory speed
instead of network rates.

While promising, the use of an FPGA accelerator might
not pay off in every case. Our experiments show that if a
query can be answered through an index lookup (in principle
all “contains”, “starts-with” and “ends-with” expressions) the
software solution will be better than the FPGA which has
to scan over the whole table. This drives the decision of
focusing on complex regular expressions and, by the analogy
of prepared statements, we want to use the FPGA not only for
a single instance of a query but for a large number of queries.
This means that the circuit needs to be runtime parameterizable
while still allowing for arbitrary, complex, regular expressions.

One additional requirement is that the FPGA needs to
be able to work directly on the same data structures as the
database engine. The overhead of copying and partitioning data
has been an impediment to the wider adoption of accelerators
(regardless of their type) – even though their nominal perfor-
mance benefits are impressive. With this in mind, our work
targets hybrid multi-core machines where the FPGA is con-
nected to the same memory as the CPU via a cache coherent
interconnect (two examples being Intel and Altera’s Heteroge-
neous Architecture Research Platform and IBM’s CAPI-based
FPGA extension cards). These architectures make it possible
for the accelerator to work on the same memory pages and data
structures as the database engine and, as a result, deliver better
performance without having to reformat or partition the data.

This paper addresses the requirements outlined above, i.e.,
1) runtime parametrization to be able to speed up a wide range
of queries, 2) handling complex expressions to improve the
cases where the database is very slow, and 3) compatibility
with database data structures so that the data does not need to
be reorganized. The paper makes the following contributions:

• We identify the types of regular expressions in databases
that could be sped up by FPGAs, and also give contrasting
examples of queries that can make use of indexes and
therefore are faster in the database engine.
• We design a module that supports POSIX Extended Reg-

ular Expressions and is runtime parameterizable with little



overhead. For this we revisited ideas from the state-of-the-
art and created a design well suited to the database-specific
requirements outlined above.

• A spectrum of possible configurations is explored, including
a hybrid hardware-software option to overcome the inherent
space limitation on the FPGA. Specifically, we compare
resource consumption as a function of maximum complexity
and also target bandwidth. This information is relevant
for future use-cases where the FPGA is shared between
different operators and the query optimizer needs to divide
the available resources, or when using the accelerator on a
machine with different memory characteristics.

II. BACKGROUND

A. Hybrid Multicore Architecture

The system used in this paper has an experimental Hy-
brid Multicore Architecture (HMA) and was made available
through the Intel-Altera Heterogeneous Architecture Research
Platform program [3]. As shown in Figure 1, the HMA is
a dual socket machine1, having a 10-core CPU (Intel Xeon
E5-2680 v2) in one socket and an FPGA (Altera Stratix
V 5SGXEA) in the other. The CPU socket has 96 GB of
memory which can be accessed by the FPGA over QPI. On
the FPGA socket no memory is installed. The FPGA has no
other interfaces than QPI.

Fig. 1: Hybrid Multicore Architecture

In contrast to most other systems with accelerators, the
FPGA has direct, cache coherent access to the main memory
through the QPI bus and interacts with it at 512 b (cache
line) granularity. We measured the memory bandwidth fetching
pages of 4 MB over QPI to peak at 5.1 GB/s, lower than what
the nominal transfer rate would allow for. Since the FPGA has
to access memory located on a different socket, its bandwidth
is naturally lower than that of the CPU which has memory on
its own socket and can achieve up to 25 GB/s (note that this
is also less than the theoretical maximum shown in Figure 1).

Intel provides an encrypted IP module which contains
the QPI endpoint and a cache on the FPGA. This IP can
be configured to expose either a physical or virtual memory
address-based interface to the user logic. The former allows
accessing multiple pages of up to 4 MB each, while the latter
provides a single 2 GB memory region which can be shared
between FPGA and CPU. For virtual addressing, the on-chip-
cache is 64 KB direct-mapped and for physical addressing it
is 128 KB two-way associative. We opted for the physical

1Following the Intel legal guidelines on publishing performance numbers
we want to make the reader aware that results in this publication were
generated using pre-production hardware and software, and may not
reflect the performance of production or future systems.

addressing option because our implementation is memory-
bound and from the two options physical addressing gives
higher bandwidth.

On the software side, Intel provides an Accelerator Ab-
straction Layer (AAL) as a library to interact with the FPGA.
The operating system (Ubuntu 14.04) is extended with a
special kernel module to communicate with the FPGA. First,
when instantiating an application that uses the FPGA, a
handshake between the hardware and software verifies that
the correct Accelerator Functional Unit (AFU) is deployed in
hardware. Then a so called Device Status Memory (DSM) page
is allocated to share control and status information between the
software and hardware. After the DSM has been set up they can
communicate directly using shared memory data structures.

B. Database Operators

Fig. 2: A simplified example of how databases build operator
trees based on user queries

Logically a database table looks like the example shown
in Figure 2. Each entry is represented by a row with multiple
attributes. Our example assumes that the shipping address is
not broken up into multiple attributes (first name, last name,
street, city, state), instead it is a single variable length string.
In databases, queries are compiled by the query optimizer into
a query plan that is, in essence, a tree of operators where
each operator executes part of the query. Our simple example
query in Figure 2 is converted into a tree with two operators:
Filter and Min. At the leaf of the tree is the database
containing the data which is stored across multiple pages. The
Filter operator selects the rows in the table which satisfy
the condition LIKE ’SEATTLE’ (using a regular expression
matcher logic) and forwards those to the Min operator which
will find the row with the minimum value iteratively and
extracts the Value attribute. This number is then the final
output of the query.

Real world queries are often much more complex than
our example and the task of the query optimizer is to use
the available operators and combine them in an execution
tree that optimizes the estimated execution time. To make the
combination of operators feasible, all work on the same well-
defined data layout and have similar interfaces. In this work
we envision a database which has operators implemented in
software as well as hardware and the query optimizer can
pick any of them to build an optimal operator tree. Thereby
the operators implemented in hardware have to adhere to the
same data layout as their software counterparts.

There are multiple ways databases lay out their data,
ranging from row-oriented to column-oriented structures. One
common trait among database systems is that they perform
their memory management independent from the OS and
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usually group records into pages. In this work we decided
to use the PAX storage layout [4], which splits the rows in
a page into its attributes and rearranges them in mini-pages
inside the same logical container, as illustrated in Figure 3.
This layout combines two characteristics: inter-record spatial
locality and low record reconstruction cost. For our solution the
first characteristic is important because, as we will later show,
our regular expression circuit is memory bound, so reading
only the attribute of interest makes sure that the bandwidth is
optimally utilized.

III. DESIGN AND IMPLEMENTATION

Our FPGA solution relies on the technique of converting
regular expressions into a non-deterministic finite state automa-
ton (NFA). The benefit of using NFAs is that multiple states
can be active at the same time, and input characters can trigger
many different state transitions in constant time – a behavior
that is not possible in software. The first difference that sets
us apart from most related work is that in the database domain
regular expressions are generally used for search on (natural)
text, in contrast to pattern matching on packet content. Natural
text contains often longer words or names. This might lead to
high state counts even in NFAs, since every character translates
to a state. Take for instance the following expression that looks
for a person’s first and last name separated by multiple spaces
or tabs and then followed by the city name:
Samuel[ \t]+Smith.*London

It is clear that in these types of expressions, the number of
total characters is much larger than the actual states required
to express the matching logic. This particular expression can
be represented with “tokens” as AB+C.*D. Therefore in our
design we decouple character matching from the NFA state
transition logic and allow a sequence of characters to be
matched as a single token. Ranges (e.g., [0-9]) are just special
characters, and can also be part of a token. This decoupling
inside the regular expression matcher directly defines the two
synthesis-time parameters of the circuit: a) the maximum num-
ber of characters it can identify and b) the maximum number
of states that the NFA can contain. The actual number to use
at runtime and the characters to associate with each token, as
well as the state transitions are all runtime parameters.

Overall we target POSIX Extended Regular Expressions
(we will refer to these simply as regular expressions) and
this work was inspired by related work such as [5] and [6]
(for a detailed comparison to these and other related work,
see Section V), with the difference that in our system the
regular expressions can be quickly modified on the FPGA and
that through compression the number of NFA states can be
significantly reduced.

Fig. 4: The hardware circuit is parametrized at runtime and
works on memory pointers received from software

Fig. 5: Working on multiple strings in parallel to achieve higher
throughput

The deployment of a particular instance of a regular
expression to the hardware is shown in Figure 4. First, the
regular expression is transformed into an NFA representation
using a Perl library2. Then, using a C++ program, we extract
from this NFA all character sequences to be represented by
tokens and compact the corresponding states into single states.
Based on this compressed form of the NFA and the character
sequences, we derive the configuration for the FPGA (the
exact format of this configuration is explained later). In our
current implementation we used the header of the PAX page
to specify the regular expression configuration for the data
items contained in the page. Since each page is possibly of a
different size and representing a different user query, runtime
parametrization is a necessity. To start processing, the software
passes the pointer to the PAX pages to the hardware, which
will navigate the internal structures on its own.

We designed the regular expression matcher to process
1 byte per cycle. To achieve higher throughput we deploy
multiple matchers in parallel and distribute the input data using
512 bit-wide FIFOs (Figure 5). The pointers in the PAX page
can be used to determine the length of the strings (we use 16
bits to store the length in bytes) and this information is used to
split the input into different strings. The outputs are collected
in 16 bit-wide FIFOs, read out in a round robin manner, and
written into a memory page. Each output value is a 16 bit
unsigned integer, in case of a match it is the byte-position of
the end of the match, otherwise it is zero.

The core of our implementation is the regular expression
matcher module that works on the input one character at a
time and is built from three parts: Input Manager, Tokenizer
(containing the character matchers) and State Blocks (the NFA
states). Figure 6 provides an overview of an example matcher
with up to 4 tokens and 4 states (we chose these sizes for
simplicity, the evaluation setups are more complex). The Input
Manager unit is responsible for converting from 512 bit input
(width of the QPI bus) to single characters, and feeding these
to the Tokenizer. It also counts how many characters have
been processed and, whenever a match happens, it will output

2search.cpan.org/∼loic/Regexp-ERE-0.01/



Fig. 6: Structure of a regular expression matcher engine

the character location of that match. Additionally, if a match
happens, it will skip the remainder of the string and fast-
forward the input to the beginning of the next string. As seen in
Figure 6, the Input Manager is also responsible for managing
runtime parametrization. It treats the first inputs after a soft
reset as configuration words (our metadata is in the header of
the PAX page, that is read first) and will load them into a
wide register (if necessary by shifting multiple words into this
register). Once the configuration register has been loaded, it
will enable the configuration mode of all character matchers
in the Tokenizer and will set up state transitions.

The Tokenizer unit is built using a series of Character
Matchers. These have two implementations, shown in Figure 7
and alternate in sequence (in Figure 6, blocks 0 and 2 are type
L, and 1 and 3 are H). This is so that they can be either
used one by one as character matchers (simple equality) or
as a pair to implement range comparisons. In the Tokenizer
a sequence of character matchers is mapped to a Token by
ignoring the active output for all but the last character in the
sequence – so in some sense the Tokens only exist in the way
the circuit is parametrized at runtime. The Tokenizer block has
a delay of one clock cycle and can consume an input character
every cycle. The output is a bit-vector concatenated from each
character matcher’s output.

The Tokenizer is parametrized using the following data (C
denotes the number of character matchers and S denotes the
number of states in the expression matcher):

• CHAR CONTENT: C ∗ 8 bits, defining the character to
match against for each character matcher block.

• IS CHAINED: C bits, indicating if the character is part of a
sequence, therefore only matches if the preceding character
also matched in the previous cycle. The first character in a
sequence will have this not set.

• IS RANGE: C/2 bits, indicating if a pair of matchers is
used for comparing the input to a range.

Each character matcher runs the following logic:

cha r ma tch [ t ] := (CHAR CONTENT[ t ]== i n c h a r | | ( IS H TYPE [ t ]
&& IS RANGE [ t / 2 ] && c h a r s m a l l e r [ t−1]==1 &&
CHAR CONTENT[ t ]> i n c h a r ) )

c h a r s m a l l e r [ t ] := (CHAR CONTENT[ t ]<= i n c h a r )
t o k e n a c t i v e [ t ] := ( cha r ma tch [ t ] && ( ! IS CHAINED [ t ] | |

w a s a c t i v e [ t −1])

The states are represented as very simple logic blocks that
in essence have a single bit of state (whether they are active

Fig. 7: Detailed view of the character matcher logic (type L
on left, type H on the right)

or not). The output of the Tokenizer is received every cycle as
a bit-vector (TOKEN ACTIVE) and the states are updated all
at once, synchronously. To perform this update the following
parametrization data is used:

• STATE TRIGS: S ∗ C bits, a vector for each state that
encodes which tokens (i.e., character matcher outputs) the
state is sensitive to.
• STATE DELAY: S ∗ log2(C) bits, the length of the token

the state is sensitive to. If there are multiple tokens of
different length that should trigger the same state, the
software will create additional states.
• STATE INEDGE: S∗S bits, a vector encoding which states

can transition to statei (incoming edge-based encoding).
• STATE STICKY: S bits, if a state is sticky then it has a .*

edge onto itself. This is an optimization to save states for
expressions with wildcards between sequences.

These vectors are used in the following way to determine at
the next cycle what states will be active:
m a y a c t i v a t e [ s ] := (TOKEN ACTIVE & STATE TRIGS [ s ] != 0 ) | |

STATE STICKY==1 | | STATE TRIGS [ s ]==0
h a s a c t i v e i n e d g e [ s ] := ( STATE ACTIVE & STATE INEDGE[ s ] !=

0) | | STATE INEDGE[ s ]==0
w i l l a c t i v a t e [ s ] := m a y a c t i v a t e [ s ] && h a s a c t i v e i n d e d g e [ s ]

The states also have a small shift register inside them which
delays the incoming activation signals using a shift register as
many cycles as the sequence takes to be detected for the given
state. This is configured using the STATE DELAY vector.

The regular expression is considered to be a match if the
state with the highest index becomes active. The configuration
software always maps the accepting state to the state with
the highest index. If there are multiple accepting states, these
will be either merged together (if their input transitions are
all conditioned by the same token) or an additional state
will be introduced with unconditioned transitions to the new
acceptance state.

It is clear that, in the current setup, one will always be able
to create a regular expression that does not fit in the available
space. It would be possible to extend this architecture with
a configuration register that can hold multiple configuration
words and on partial match of the regular expression the circuit
can re-parameterize itself with the next word. This way, long
regular expressions can be tiled into multiple shorter ones and
still be executed in hardware. Since the cost of reloading the
configuration is only 2 clock cycles, the processing could be
resumed quickly. It is clear, however, that in this case the
design will potentially waste logic in the average case in the
expectation of a very complex regular expression.



TABLE I: Patterns used for evaluation

Pattern Complexity Use case
P1 ’P\.O\. Box’ low DB
P2 ’Next.*Day.*Shipping’ medium DB
P3 ’a(REQIMG|RVWCFG)b’ medium Snort
P4 ’Max-dotdot[ \n]*[0-9]{3,}’ medium Snort
P5 ’(P\.O\. Box|PB).*(87[0-9]{4})’ high DB
P6 ’SITE[\t\r\n\v\f]+NEWER’ high Snort

As the alternative, and more resource sparing solution, we
handle the occasional regular expression that does not fit on
the FPGA by dividing it between hardware and software. Since
the software gets for each string a pointer to the end-position
where the regular expression matched on the FPGA, it can
simply resume the search at that location for its own part
of the expression. While there is some limitation on what
regular expressions can be split this way between software
and hardware, cutting the regular expression at a “.*” symbol
will always lead to correct results.

IV. EVALUATION

The regular expression matcher described in the previous
section was implemented on the HMA machine introduced in
Section II-A. The QPI endpoint provides a 200 and a 400 MHz
clock. Since the QPI interface exposed to user logic runs at
the former clock speed, our default clock rate for the regular
expression matcher is also 200 MHz, and we deploy 32 parallel
matchers to provide a 6.4 GB/s throughput for the circuit. As
will be shown, this is more than 25% higher than the QPI
bandwidth in this machine.

As a baseline comparison for string matching, we chose
two high performance software regular expression engines:
Intel Hyperscan and Google RE2, and a widely adopted
commercial database (for legal reasons we will call this system
DBx). Each experiment was repeated 10 times for software and
100 times for hardware and the average value is reported. We
also measured the standard deviation and found it to be very
small and consistent throughout the experiments. The software
and hardware regular expression engines are both operating on
the same PAX page layout explained earlier in Figure 3. For
most experiments we used a size of 4 MB for this page. DBx
uses a similar, but proprietary, format to store data in pages.
To minimize the overhead of record parsing or reconstruction,
DBx operates on a relation with a single column of type
VARCHAR which contains fixed-length strings.

For our evaluation we used natural text in the form of
address strings. Each string contains names, street, city, and
area code, generated at random and concatenated into a single
string. The length of the strings was chosen explicitly for
different experiments, and they were either shortened or con-
catenated together to have a predefined fixed length (unless
explicitly stated, it is 64 B). For each regular expression we
used in our Evaluation we inserted a fixed amount of “hits”
into the strings uniformly at random (20% unless otherwise
stated). The actual contents of the strings are only relevant to
ensure that character frequencies follow a distribution similar
to real-life data.

Table I shows the regular expressions used in the exper-
iments. We use three patterns that resemble queries in the
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Fig. 8: Number of NFA vs. DFA states for each pattern and
the benefit of compressing NFAs through character extraction

TPC-W 3 benchmark. Additionally, as a reference to related
work, three representative patterns from the Snort 4 community
rule set were also added. As seen in the table, we classify
the expressions into three complexity classes, based on how
many regular expression features they use. P1 and P2 can be
expressed in databases using LIKE, but the others require the
more general REGEXP LIKE. Only P1 can be answered with
an index lookup.

A. Compressed NFAs

As a first experiment, we looked at the proposed set
of regular expressions and aimed to answer two questions:
what is the benefit of sequence extraction on the final NFA
complexity, and what is a good common configuration of
the regular expression matcher to conduct the rest of the
evaluation. Figure 8 shows how many NFA states are required
to implement each pattern, if one character corresponds to
one state. It also shows the equivalent DFA, and then the
compressed NFA states, and the number of characters needed
in total to evaluate the pattern (the number of tokens is smaller
than the characters). Interestingly, the DFAs only suffer from
“state explosion” for certain patterns. Namely P2 and P5,
both contain an unlimited wildcard repetition ’.*’. Further, we
conclude from this experiment that the extraction of sequences
is a useful optimization for these kinds of expressions as it
reduces the number of states significantly (NFA Compr.). As
a result of this experiment, our default configuration of the
hardware circuit handles 8 states and up to 20 characters.

We also measured the time it took to derive the bit-vectors
for runtime parametrization for P1 through P6. Depending on
the complexity of the pattern, the Perl script produced the
NFA in 40-240µs, and the C++ code ran typically in the 40-
50µs range. These numbers are relatively low. Compared, for
instance, to scanning 4 MBs of main memory over QPI that
takes around 800µs, they are adequate as proof of concept
(real database tables are typically larger than that). But in our
prototype some of the work is duplicated between the Perl
script and the C++ code, and as a result the overhead could be
reduced. Since for Hyper and RE2 the time to parse the regular
expression and create an internal representation is also high we
report both their and our runtime without this overhead.

B. Performance

The first performance experiment we conducted answers
two questions: how does the software performance compare

3www.tpc.org/tpcw/
4www.snort.org/downloads/
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against the hardware for the simplest pattern (i.e., where the
software is the fastest), and what characteristics can we expect
from the QPI link in our evaluation machine. We evaluated P1

on database tables containing 16 to 1 Mio. strings. We chose
the simplest pattern because the database can build an index
for it and the software shows the best performance. Figure 9
shows that an index clearly outperforms any approach that has
to scan over the whole data set, be it hardware or software.
On the other hand, if there is no index available, the hardware
implementation will always be faster than software.

When comparing to recent work on GPUs [1], the FPGA
is slower for simplistic patterns, but it is using its memory
bandwidth more efficiently. We measured 0.4ms on the FPGA
vs. the 0.1ms reported on the GPU for 32k strings 64 B each. It
is important to highlight that the memory bandwidth available
for the GPU is more than ten times higher than our system, yet
it is not proportionally faster. Also, the solution does not extend
to general regular expression patterns, only simple substring
lookups (i.e., only P1 and P2 in our examples).

This experiment also shows that the latency of accessing
the hardware from software is in the range of 1-2 µs (we mea-
sured the internal processing time on the FPGA, and subtracted
it from the execution time measured in software). The FPGA’s
throughput comes very close to the peak bandwidth of the QPI
bus. The overhead comes from transferring metadata, such as
page headers and pointers, and the write-back of the results to
memory. These are not included in our reported throughput.
Since our circuit has been provisioned for 6.4 GB/s it is clear
that the execution is bound by the QPI bus.

To illustrate the bottleneck on the QPI bus, and also to
show that our circuit is flexible in terms of string length and
mixed workloads, we ran P3 on the FPGA with different mix
of string sizes. On one end all strings were 64 B long, while on
the other end all were 256 B. In the middle they were randomly
mixed. PAX pages contain both pointer and string data and in
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Figure 10 we show processing throughput both in terms of the
total amount of bytes moved through QPI for processing the
4 MB page, and also in terms of useful throughput (i.e., strings
only). As can be seen, the circuit has a constant speed, bound
by the QPI bus, regardless of the string size mix.

The regular expression matcher units inside the FPGA are
designed to consume input at a constant rate regardless of
string length or regular expression complexity. Figure 11 shows
that throughput stays constant with increasing hit rate both
for 64 and 256 B strings. On the other hand, software slows
down in case there are more matching strings in the input
because it becomes increasingly more compute bound. This
effect intensifies with more complex expressions.

As a final comparison to software (Figure 12), we illustrate
how the increasing complexity of the regular expressions
impacts the software solutions (DBx uses LIKE for P1 and
P2, and REGEXP LIKE for the rest). The FPGA can consume
input at a constant rate, regardless the regular expression com-
plexity, and stays at the QPI bandwidth bottleneck explained
before. The software libraries are single threaded and run on
a single core, but even with perfect linear scaling for 10 cores
they will be slower than the FPGA for all but the simplest
pattern. In Figure 12 there is an additional pattern, PH . This
is a concatenation of P5 and P1, where the first part is ran
in hardware, and then the software continues matching P1 on
strings that are a partial match. We measured the performance
of this hybrid setup both when using Hyper and RE2 for post-
processing, and plot the results. The hybrid performance is
very competitive even when compared to the simplest pattern
in software (one reason might be that the software can skip
ahead in the strings to the location of the match directly instead
of re-scanning everything).

C. Resource Usage

In Table II we show how many resources each individual
building block needs, and also the space required by our default
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Fig. 13: Resource consumption

TABLE II: Resource consumption of basic building blocks

Component Comb. ALUTs Logic Reg.
Character matcher (L) 17 13
Character matcher (H) 13 11

Single state 10 23
Reg.Ex. S=8, C=20 908 1028
Page access logic 3529 2111

configuration with 8 states and up to 20 characters. While these
numbers could be reduced by hard-coding the patterns in that
case the accelerator would no longer be as well-adapted for
databases which demand fast runtime parametrization.

For future systems we envision two trends: 1) The memory
bandwidth of the FPGA will be increased, 2) dynamic schedul-
ing of operators on the FPGA and possibly sharing it between
multiple operators. Therefore, it is important to explore how
different target throughput levels translate to resource con-
sumption numbers, and the other way around. In Figure 13a
we show how much space the operator uses when configured
to match different throughput levels. This is reported together
with the QPI endpoint, that needs a fixed 31% of the ALMs
and 7% of M20k memories. Adjusting throughput is done by
changing the number of parallel matchers, or by clocking the
circuit up. It has to be mentioned that the interface to the
QPI logic is clocked at 200 MHz and cannot be changed. This
means that for the 25.6 GB/s case where our circuit is clocked
at 400 MHz the QPI still runs at 200 MHz, so in principle
this setup would be bottlenecked by the input (512 b/cycle).
Nonetheless, it shows that our logic is quite scalable and could
immediately benefit from a higher memory bandwidth.

Finally, in Figures 13b and 13c we illustrate the effect
of adding more characters or states to the regular expres-
sion matchers. Here we report the numbers as the required
ALMs reported by the tool for an individual regular ex-
pression matcher unit (excluding the FIFOs, but including
the parametrization logic), They do not consume any M20K
blocks, so we omitted these from the graph. It is visible in
the figures that adding characters (Figure 13b) leads to a
linear increase in resources, whereas states (Fig. 13c) have an
exponential effect. In Figure 13b the slope increases slightly
when there are more states in the regular expression matcher.
This is not very surprising as the size of the bit-vectors used to
transfer “active” states between character matchers and states
is dependent on both sides. As explained earlier, thanks to our
tokenization of character sequences, the compacted NFAs can

easily fit in 8 or 16 states for most real world DB workloads.
One take-away is that if there is free space on the chip, adding
characters might be a more useful way of extending the circuit.

V. RELATED WORK

A. Regular Expressions and Network Intrusion Detection

A large body of related work uses regular expression
matching on FPGAs for network intrusion or event detec-
tion, e.g., [2], [5], [7], [8]. The use of these solutions in
databases could be advantageous, however as we explained
in the introduction, the assumptions and requirements made in
existing work focused on networking. Network approaches are
mostly designed for a pre-defined line-rate of 10 to 40 Gbps
and their goal is to compare many concurrent patterns to the
input stream. In databases, the goal is to optimally utilize the
available memory-bandwidth, which generally is in the range
of 30 to 60 GB/s. Although in our setup the FPGA is limited
by the QPI bandwidth, we showed in the previous section
that the regex matchers could process data at up to 25.6 GB/s
(204.8 Gbps). Another difference to network solutions is that
only a single or a few regular expressions are evaluated rather
than hundreds, defined at run-time by the users.

Considerable work has been devoted to increasing the
throughput of regular expression matchers on FPGAs, and one
way of doing this is by accepting more than one character per
cycle. Examples of such work are: [5], [9], [10], [11]. One
approach for multi-character processing is building an NFA
with multi-character transitions. This leads to an exponential
increase in the number of states in the NFA. For that reason
further techniques have to be applied to compact the state space
and keep the resource consumption at a feasible level. In our
work we decided to achieve higher throughput through data
parallelism by deploying multiple regex matchers.

There is also work that uses more special purpose hard-
ware, such as TCAMs [12] and specialized microproces-
sors [13], [14]. While these have promising performance, in
our work we require more flexibility because we envision the
FPGA as an accelerator on which many different database
operators can be deployed dynamically, the regular expression
being only one.

B. Parameterizable/Flexible Designs

There are different ways that other projects implemented
runtime parametrization or re-loading of regular expressions.



For instance, Eguro et. al. [15] propose dynamic reconfigu-
ration to trade off performance for capacity. Thereby virtu-
alizing the fabric and time-multiplexing the computation of
multiple complex patterns on the same chip. Other works
employ very similar methods to our solution in terms of
runtime parameterization by loading registers (or BRAMs)
with character and/or state transition data at runtime. In [6]
the authors use a Tokenizer that is similar to what we have
used, but in their domain the NFA is fixed and only the
transition parameters are configurable. In the work of Kaneta
et. al. [16] the states transitions can be changed at will, but
the characters are processed separately (no compaction of
sequences) and the resulting NFAs can not capture some of
the features of regular expressions (for instance the | operator
for two alternate possibilities, e.g. (a|b)). The authors of [17]
implement a similarly flexible system, but they use a DFA-
based representation, which only allows a state transition every
2 cycles while our NFA can consume a character every cycle.

C. Database Acceleration

Related work in the field of database acceleration with
FPGAs is often limited by the requirement of explicit data
movement. While the need for true shared memory between
accelerator and CPU is not a new one, it is only recently that
commercial systems with such capabilities appeared (e.g., our
evaluation system, IBM’s CAPI accelerators or the Convey
HC-2). An example of DMA-based solutions is the work of
Ueda et al. [18] that pushes join algorithms to the FPGA
that can access the host memory using DMA over PCIe.
In addition to implementing two join algorithms, they also
dynamically reconfigure the FPGA with the algorithm more
suited to the current input data. Recent related work [19]
explored the use of selection, merge join and sorting operators
on FPGAs. Their system only accesses the local DDR memory
on the FPGA boards. While it benefits from the high local
memory bandwidth, it suffers however from data partitioning
and in contrast to our system data is not directly accessible
by the host for consistent modification. Further work [20]
exploring hash joins on FPGAs uses simulation to evaluate
their implementation, neglecting data movement questions.

Other related work uses the FPGA as a “bump in the wire”
to implement database operators [21], [22], [23]. While our
work operates on data in main memory which is common
for databases, these works place the FPGA into the data path
between CPU and the durable storage for tables. As a result
they remove the problem of data movement and benefit form
line-rate processing capabilities of the FPGA, but at the same
time limit the types of operations they can accelerate. In hybrid
architectures where the CPU and FPGA have similar memory
access there are more offloading opportunities.

VI. CONCLUSION

In this work we made the case for runtime parameterizable
designs for FPGAs in the context of databases. We illustrate
the benefit of acceleration for regular expression matching
operators, and also explain why the access overhead and
configuration overhead of the FPGA had to be minimized to
make a difference. Additionally, we show that the target for
hardware acceleration should be moderate to complex regular
expressions, because in the simple cases the database will

always win using an index. We see this work fitting well
with other efforts of database acceleration, and believe that
the steps taken in identifying the benefits and challenges, and
then re-imagining the state of the art for regular expression
matching provides lessons that can be used for implementing
other operators as well.
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