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StreamChain in a nutshell

• Goal: Low latency and high throughput operation in permissioned 
ledgers for wider adoption (without changing security or reliability 
properties)

• Idea: Revisit core design decisions → turn block-based processing 
into streaming processing

• Enables: New opportunities for blockchains, ability to benefit from 
recent hardware trends
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The lineage of permissioned ledgers

• Public ledgers (blockchains)
• Geo-distribution → no way around 

communication latency, gossip to 
keep everyone up to date

• Proof-of-work → amortize cost by 
packaging up many TXs in blocks

• Permissioned ledgers
• Compelling non geo-distributed 

use-cases
• Low latency, high bandwidth, gossip 

not necessary

• No proof-of-work
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Pain point: When executed inside the same datacenter, 
permissioned ledgers still take hundreds of milliseconds 

for transaction finality!



The source of high latency
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StreamChain – Design principles

• Process transactions system-wide as they arrive
• Reduces latency without impacting throughput

• Use batching to hide the cost of high-latency operations (disk accesses)
• Logical “blocking” of transactions and batching are decoupled

• Use multi-core parallelism to speed up cryptographic operations
• Streaming doesn’t change the cost of these…
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Hyperledger Fabric 101

• Open source platform for building applications on top of a 
permissioned ledger
• Smart contracts as “chain code” written in various languages

• Customizable behavior

• Separates ordering of transactions into dedicated service – pluggable 
implementations for BFT
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Peer

Executing transactions in Fabric

• Has an EOV model to save resources, provide confidentiality
• Execute: Choice of endorsers depends on a user’s endorsement policy and produce 

R/W set of the TX

• Order: Orderer orders the transactions (R/W sets signed by endorsers), signs blocks

• Validate: Nodes apply R/W set if endorsement is valid and compatible with state
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Life after Ordering in Fabric

• Fabric can have failed transactions due to R/W 
set conflicts
• Client have to retry transaction

• (Or use a suitable programming model)

• The less latency between execution and 
validation, the less chance of failing TX
• StreamChain brings this additional benefit in Fabric
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Sketch of StreamChain in Fabric
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Our Proof of Concept

• Modifies Fabric v1.0 code to simulate behavior

• Streaming by making blocks with 1 TX and null signatures from CFT 
ordering service
• Still relies on TLS connections

• Cost of Orderer signature checking per block is negligible compared to TX 
signatures

• Implemented parallel signature checks on TXs in the peers

• Simulating amortized cost of disk access using RAMdisk
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Does this work with ordering service failures?

• For CFT: Connections to ordering nodes set up via TLS
• Can rely on single ordering node until crash

• For BFT: If each node connects to t+1 ordering nodes: data can be 
streamed from one, hashes from the others 
• High bandwidth requirement, many connections
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Does this work with a BFT ordering service?

• If connecting to only one ordering node, transactions cannot be 
recorded to ledger as they arrive
• Multi-signature required periodically

• Can speculate on state in the meantime – explained in the paper
• Make transaction outcome immediately visible to execution logic

• If signature is wrong, remove temporary state

• May waste work but no data corruption possible on ledger
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Evaluation

• Ran StreamChain in the IBM Cloud (9 machines)
• Intel Xeon E5-2683 @ 2GHz

• SSD storage

• 1Gbps network

• Compared to Fabric (Fabcoin) [Eurosys18]

• UTXO application

• ~4000TX/s, ~350ms end-to-end latency

• (Related work has similar orders of magnitude)
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Latency
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Throughput vs Latency
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Thoughts on the future

• Permissioned ledger adoption could hinge on performance
• Revisit assumptions: streaming processing is a realistic option

• Proof-of-concept using Hyperledger Fabric

• StreamChain exposes new bottlenecks → New research challenges
• Ordering service optimizations 

• Smart contract execution
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Birds of a Feather Session tomorrow:
Consensus and coordination using 

modern hardware


