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StreamChain in a nutshell

* Goal: Low latency and high throughput operation in permissioned
ledgers for wider adoption (without changing security or reliability
properties)

* Idea: Revisit core design decisions = turn block-based processing
Into streaming processing

* Enables: New opportunities for blockchains, ability to benefit from
recent hardware trends



The lineage of permissioned ledgers

 Public ledgers (blockchains) * Permissioned ledgers
* Geo-distribution = no way around * Compelling non geo-distributed
communication latency, gossip to use-cases
keep everyone up to date * Low latency, high bandwidth, gossip
* Proof-of-work = amortize cost by not necessary
packaging up many TXs in blocks * No proof-of-work

——

Pain point: When executed inside the same datacenter,
permissioned ledgers still take hundreds of milliseconds
for transaction finality!



The source of high latency

Extra latency
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StreamChain — Design principles

* Process transactions system-wide as they arrive
* Reduces latency without impacting throughput

* Use batching to hide the cost of high-latency operations (disk accesses)
* Logical “blocking” of transactions and batching are decoupled

e Use multi-core parallelism to speed up cryptographic operations
» Streaming doesn’t change the cost of these...



Hyperledger Fabric 101

* Open source platform for building applications on top of a
permissioned ledger
* Smart contracts as “chain code” written in various languages
* Customizable behavior

» Separates ordering of transactions into dedicated service — pluggable
implementations for BFT




Executing transactions in Fabric

* Has an EOV model to save resources, provide confidentiality

* Execute: Choice of endorsers depends on a user’s endorsement policy and produce
R/W set of the TX

* Order: Orderer orders the transactions (R/W sets signed by endorsers), signs blocks
 Validate: Nodes apply R/W set if endorsement is valid and compatible with state
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Life after Ordering in Fabric

* Fabric can have failed transactions due to R/W
set conflicts

* Client have to retry transaction
e (Or use a suitable programming model)

* The less latency between execution and
validation, the less chance of failing TX

* StreamChain brings this additional benefit in Fabric
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Sketch of StreamChain in Fabric
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Our Proof of Concept

 Modifies Fabric v1.0 code to simulate behavior

e Streaming by making blocks with 1 TX and null signatures from CFT
ordering service
e Still relies on TLS connections

* Cost of Orderer signature checking per block is negligible compared to TX
signatures

* Implemented parallel sighature checks on TXs in the peers
e Simulating amortized cost of disk access using RAMdisk



Does this work with ordering service failures?

* For CFT: Connections to ordering nodes set up via TLS
* Canrely on single ordering node until crash

* For BFT: If each node connects to t+1 ordering nodes: data can be
streamed from one, hashes from the others

* High bandwidth requirement, many connections
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Does this work with a BFT ordering service?

* If connecting to only one ordering node, transactions cannot be
recorded to ledger as they arrive

e Multi-signature required periodically

e Can speculate on state in the meantime — explained in the paper
* Make transaction outcome immediately visible to execution logic
* If signature is wrong, remove temporary state



Evaluation

 Ran StreamChain in the IBM Cloud (9 machines)
* Intel Xeon E5-2683 @ 2GHz
* SSD storage
* 1Gbps network

 Compared to Fabric (Fabcoin) [Eurosys18]

* UTXO application
e ~4000TX/s, ~350ms end-to-end latency
e (Related work has similar orders of magnitude)
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Throughput vs Latency

Throughput bound by R/W set
check and ledger commit.
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Thoughts on the future

* Permissioned ledger adoption could hinge on performance
* Revisit assumptions: streaming processing is a realistic option
* Proof-of-concept using Hyperledger Fabric

* StreamChain exposes new bottlenecks 2
* Ordering service optimizations
* Smart contract execution

Birds of a Feather Session tomorrow:
Consensus and coordination using
modern hardware



