StreamChain:
Do Blockchains Need Blocks?

Zsolt Istvan, Alessandro Sorniotti, Marko Vukolic¢
IMDEA Software IBM Research Ziirich

StreamChain in a nutshell

* Goal: Low latency and high throughput operation in permissioned
ledgers for wider adoption (without changing security or reliability
properties)

* Idea: Revisit core design decisions = turn block-based processing
Into streaming processing

* Enables: New opportunities for blockchains, ability to benefit from
recent hardware trends

The lineage of permissioned ledgers

 Public ledgers (blockchains) * Permissioned ledgers
* Geo-distribution = no way around * Compelling non geo-distributed
communication latency, gossip to use-cases
keep everyone up to date * Low latency, high bandwidth, gossip
* Proof-of-work = amortize cost by not necessary
packaging up many TXs in blocks * No proof-of-work

——

Pain point: When executed inside the same datacenter,
permissioned ledgers still take hundreds of milliseconds
for transaction finality!

The source of high latency

Extra latency

Input: TRTRTRTRTRTITITRT
ogi1p2314516Q171)]8

Compute:

Compute
hash + Sign

outout: ISTTTTTTTT
utput: Mel:121:14]s]¢]7

a) “Block” behavior

out i B2 B2 B2 B2 B B Bd B
put: ola1lz21l3lz2ls51l6l71]s

Compute: Compute hash + Sign

Output: i

» time

b) Streaming behavior

> time

StreamChain — Design principles

* Process transactions system-wide as they arrive
* Reduces latency without impacting throughput

* Use batching to hide the cost of high-latency operations (disk accesses)
* Logical “blocking” of transactions and batching are decoupled

e Use multi-core parallelism to speed up cryptographic operations
» Streaming doesn’t change the cost of these...

Hyperledger Fabric 101

* Open source platform for building applications on top of a
permissioned ledger
* Smart contracts as “chain code” written in various languages
* Customizable behavior

» Separates ordering of transactions into dedicated service — pluggable
implementations for BFT

Executing transactions in Fabric

* Has an EOV model to save resources, provide confidentiality

* Execute: Choice of endorsers depends on a user’s endorsement policy and produce
R/W set of the TX

* Order: Orderer orders the transactions (R/W sets signed by endorsers), signs blocks
 Validate: Nodes apply R/W set if endorsement is valid and compatible with state

aaaaa
- N
N

e e % State KVS

199

<

Life after Ordering in Fabric

* Fabric can have failed transactions due to R/W
set conflicts

* Client have to retry transaction
e (Or use a suitable programming model)

* The less latency between execution and
validation, the less chance of failing TX

* StreamChain brings this additional benefit in Fabric

~~~~
- ~

-
————————

State KVS

1994




Sketch of StreamChain in Fabric

Endorsement of chain codes

Pipeiinad execution of Validate step

TXs from Orderer

—

Sign. Valid.

2/W Set
Vaiidation

R -~

’
[T g

\
............

Streaming

Streaming

Write to
Ledger

Batching

1994




Our Proof of Concept

 Modifies Fabric v1.0 code to simulate behavior

e Streaming by making blocks with 1 TX and null signatures from CFT
ordering service
e Still relies on TLS connections

* Cost of Orderer signature checking per block is negligible compared to TX
signatures

* Implemented parallel sighature checks on TXs in the peers
e Simulating amortized cost of disk access using RAMdisk



Does this work with ordering service failures?

* For CFT: Connections to ordering nodes set up via TLS
* Canrely on single ordering node until crash

* For BFT: If each node connects to t+1 ordering nodes: data can be
streamed from one, hashes from the others

* High bandwidth requirement, many connections

O O
T

11



Does this work with a BFT ordering service?

* If connecting to only one ordering node, transactions cannot be
recorded to ledger as they arrive

e Multi-signature required periodically

e Can speculate on state in the meantime — explained in the paper
* Make transaction outcome immediately visible to execution logic
* If signature is wrong, remove temporary state



Evaluation

 Ran StreamChain in the IBM Cloud (9 machines)
* Intel Xeon E5-2683 @ 2GHz
* SSD storage
* 1Gbps network

 Compared to Fabric (Fabcoin) [Eurosys18]

* UTXO application
e ~4000TX/s, ~350ms end-to-end latency
e (Related work has similar orders of magnitude)



Latency

Fabric (Fabcoin)

StreamChain —
[l | Ittt | I
10! 102 103

End-to-end latency (ms)

Percentage of total time

100

80

40

20

IL 11 ':]  Execution
iy LD Ordering
i ;i | B Signature val.
i | R/W Set val
i B commit
7
- N ]
Z
0 : b
Fabric (Fabcoin) StreamChain

14



Throughput vs Latency

Throughput bound by R/W set
check and ledger commit.

'—\
'
o

N
o

® Fabric (Fabcoin)

=
0 O
o O

40 Future expectation
20 StreamChain P.o.C.
0 @&— ——O—‘—ikfg—oi[*f

0 1000 2000 3000 4000
Throughput (TX/s)

Committing Logic Latency (ms)
(@)}
o



Thoughts on the future

* Permissioned ledger adoption could hinge on performance
* Revisit assumptions: streaming processing is a realistic option
* Proof-of-concept using Hyperledger Fabric

* StreamChain exposes new bottlenecks 2
* Ordering service optimizations
* Smart contract execution

Birds of a Feather Session tomorrow:
Consensus and coordination using
modern hardware



