
StreamChain:
Do Blockchains Need Blocks?
Zsolt István, Alessandro Sorniotti, Marko Vukolić
IMDEA Software IBM Research Zürich

StreamChain in a nutshell

• Goal: Low latency and high throughput operation in permissioned
ledgers for wider adoption (without changing security or reliability
properties)

• Idea: Revisit core design decisions → turn block-based processing
into streaming processing

• Enables: New opportunities for blockchains, ability to benefit from
recent hardware trends

2

The lineage of permissioned ledgers

• Public ledgers (blockchains)
• Geo-distribution → no way around

communication latency, gossip to
keep everyone up to date

• Proof-of-work → amortize cost by
packaging up many TXs in blocks

• Permissioned ledgers
• Compelling non geo-distributed

use-cases
• Low latency, high bandwidth, gossip

not necessary

• No proof-of-work

3

Pain point: When executed inside the same datacenter,
permissioned ledgers still take hundreds of milliseconds

for transaction finality!

The source of high latency

4

time

T
0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

Compute
hash + Sign

S
I
G

T
0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

time

T
0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

Compute hash + Sign

S
I
G

T
0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

Input:

Compute:

Output:

Input:

Compute:

Output:

a) “Block” behavior

b) Streaming behavior

Extra latency

StreamChain – Design principles

• Process transactions system-wide as they arrive
• Reduces latency without impacting throughput

• Use batching to hide the cost of high-latency operations (disk accesses)
• Logical “blocking” of transactions and batching are decoupled

• Use multi-core parallelism to speed up cryptographic operations
• Streaming doesn’t change the cost of these…

5

Hyperledger Fabric 101

• Open source platform for building applications on top of a
permissioned ledger
• Smart contracts as “chain code” written in various languages

• Customizable behavior

• Separates ordering of transactions into dedicated service – pluggable
implementations for BFT

6

Peer

Peer

Peer

Ord.

Ord.

Ord.

CC

Peer

Executing transactions in Fabric

• Has an EOV model to save resources, provide confidentiality
• Execute: Choice of endorsers depends on a user’s endorsement policy and produce

R/W set of the TX

• Order: Orderer orders the transactions (R/W sets signed by endorsers), signs blocks

• Validate: Nodes apply R/W set if endorsement is valid and compatible with state

7

Peer

Peer

Peer

CC

Ledger

State KVS
CC

R/W

R/W

R/W

Ordering

Life after Ordering in Fabric

• Fabric can have failed transactions due to R/W
set conflicts
• Client have to retry transaction

• (Or use a suitable programming model)

• The less latency between execution and
validation, the less chance of failing TX
• StreamChain brings this additional benefit in Fabric

8

Pee
r

Ledger

State KVS
CC

R/W

100ms

CC2

CC3

Pee
r

Sketch of StreamChain in Fabric

9

Sign. Valid. R/W Set
Validation

Write to
Ledger

Streaming Streaming Batching

TXs from Orderer

Pipelined execution of Validate step

LS

Endorsement of chain codes

Our Proof of Concept

• Modifies Fabric v1.0 code to simulate behavior

• Streaming by making blocks with 1 TX and null signatures from CFT
ordering service
• Still relies on TLS connections

• Cost of Orderer signature checking per block is negligible compared to TX
signatures

• Implemented parallel signature checks on TXs in the peers

• Simulating amortized cost of disk access using RAMdisk

10

Does this work with ordering service failures?

• For CFT: Connections to ordering nodes set up via TLS
• Can rely on single ordering node until crash

• For BFT: If each node connects to t+1 ordering nodes: data can be
streamed from one, hashes from the others
• High bandwidth requirement, many connections

11

TX
#

#

Does this work with a BFT ordering service?

• If connecting to only one ordering node, transactions cannot be
recorded to ledger as they arrive
• Multi-signature required periodically

• Can speculate on state in the meantime – explained in the paper
• Make transaction outcome immediately visible to execution logic

• If signature is wrong, remove temporary state

• May waste work but no data corruption possible on ledger

12

Evaluation

• Ran StreamChain in the IBM Cloud (9 machines)
• Intel Xeon E5-2683 @ 2GHz

• SSD storage

• 1Gbps network

• Compared to Fabric (Fabcoin) [Eurosys18]

• UTXO application

• ~4000TX/s, ~350ms end-to-end latency

• (Related work has similar orders of magnitude)

13

Latency

14

Throughput vs Latency

15

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000

C
o

m
m

it
ti

n
g

Lo
gi

c
La

te
n

cy
 (

m
s)

Throughput (TX/s)

Fabric (Fabcoin)

StreamChain P.o.C.

Future expectation

Throughput bound by R/W set
check and ledger commit.

Thoughts on the future

• Permissioned ledger adoption could hinge on performance
• Revisit assumptions: streaming processing is a realistic option

• Proof-of-concept using Hyperledger Fabric

• StreamChain exposes new bottlenecks → New research challenges
• Ordering service optimizations

• Smart contract execution

16

Birds of a Feather Session tomorrow:
Consensus and coordination using

modern hardware

