
StreamChain: Do Blockchains Need Blocks?
Zsolt István

∗

IMDEA Software Institute

zsolt.istvan@imdea.org

Alessandro Sorniotti

IBM Research - Zurich

aso@zurich.ibm.com

Marko Vukolić

IBM Research - Zurich

mvu@zurich.ibm.com

ABSTRACT
Processing at block granularity and blockchains seem inseparable.

The original role of blocks is to amortize the cost of cryptography

(e.g., solving proof-of-work) and to make data transfers more ef-

ficient in a geo-distributed setting. While blocks are a simple and

powerful tool for amortizing these costs, today in permissioned dis-

tributed ledgers, that are often neither geo-distributed, nor require

proof-of-work, the benefits of operating on blocks are overshad-

owed by the large latencies they introduce.

Our proposal is to switch the distributed ledger processing para-

digm from block processing to stream transaction processing and

rely on batching (i.e., block formation) only for amortizing the

cost of disk accesses for commit operations. This paradigm shift

enables shaving off end-to-end latencies by more than an order of

magnitude and opens up new use-cases for permissioned ledgers.

We demonstrate a proof-of-concept of our idea using Hyperledger

Fabric, achieving end-to-end latencies of less than 10ms while main-

taining relatively high throughput, namely close to 1500 tps.

CCS CONCEPTS
• Information systems→ Data management systems; • Applied
computing → Electronic commerce; • Computer systems orga-
nization → Distributed architectures;

ACM Reference Format:
Zsolt István, Alessandro Sorniotti, and Marko Vukolić. 2018. StreamChain:

Do Blockchains Need Blocks?. In 2nd Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers (SERIAL’18), December 10–14, 2018,
Rennes, France. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/

3284764.3284765

1 INTRODUCTION
Permissioned distributed ledgers, such as Hyperledger Fabric [1] or

Corda [3], inherit their core design from public blockchains and, as a

result, their latencies are typically in the order of half a second, even

when running on a local area network. In these settings, the high

latency of committing operations can hinder wide-spread adoption,

especially given that these systems do not require costly proof-

of-work, and the fundamental problem distributed ledgers solve,

namely reaching consensus among nodes, can be performed at the

order of milliseconds even if we assume Byzantine faults [2, 4].

∗
Work done in IBM Research - Zurich.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SERIAL’18, December 10–14, 2018, Rennes, France
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6110-1/18/12. . . $15.00

https://doi.org/10.1145/3284764.3284765

Figure 1: In StreamChain, transactions are relayed to peers
as soon as they are ordered, removing batching delays.

The main reason for this high latency comes from the fact that

blockchains batch transactions into blocks. For instance, in Hy-

perledger Fabric [1], transactions are grouped into blocks by an

ordering service (see Figure 1a), and then validated as a block at

the peers. Of course, in public distributed ledgers (blockchains)

that were designed for geo-distributed use, blocks are an important

tool in amortizing the cost of producing proof-of-work and the

communication delays across the network. Today, however, there

is a growing opportunity for distributed ledgers operated in a per-

missioned way, with nodes physically close to each other, e.g. in

datacenters close to a stock exchange in an asset trading use cases,

or close to a shipping port in a supply-chain use case.

In this work we revisit the relationship between distributed

ledgers and blocks with the goal of reducing end-to-end latencies

by an order of magnitude. We propose StreamChain, a design for

distributed ledgers that handles transactions in a streaming manner

both during agreement on their order and during their processing

(e.g., execution and validation of a distributed application). In par-

ticular, our proof-of-concept (PoC) design, built on Hyperledger

Fabric, implements streaming both at the orderer (Figure 1b) and
the peers. In fact, StreamChain selectively uses batching (blocks)

when writing to the persistent ledger state, because this allows

amortizing disk access costs without introducing significant la-

tency penalties. As a result, StreamChain can deliver low latencies

and high throughput at the same time. It is important to note that

these changes do not require modifications to the system and threat

model, even if the underlying ordering service is Byzantine fault

tolerant.

https://doi.org/10.1145/3284764.3284765
https://doi.org/10.1145/3284764.3284765
https://doi.org/10.1145/3284764.3284765

SERIAL’18, December 10–14, 2018, Rennes, France Zsolt István, Alessandro Sorniotti, and Marko Vukolić

Beyond the intuitive, non-functional desirability of low latency in

distributed ledgers, which directly translates to very fast consensus

finality [11], low end-to-end latencies have an additional positive

effect in execute-order-validate (EOV) distributed ledgers [1], such

as Hyperledger Fabric. In these systems, executing transactions

on stale data results in failing transactions in the validation phase

(more details are in Section 2.2). Although some of these validation

failures could be avoided with additional work in the execution

step [7] or by using specific programming models, reducing laten-

cies in general will reduce data staleness and benefit any application

running on top.

Our StreamChain PoC on Hyperledger Fabric demonstrates the

feasibility and benefits of our approach. Our StreamChain PoC

delivers less than 10ms end-to-end latencies and close to 1500 trans-

action/s throughput, having to our knowledge the lowest latency of

all existing distributed ledgers, while maintaining very competitive

throughput compared to today’s best performing systems. Based on

our experience creating the PoC, we list several recommendations

on how to implement a full-fledged version of StreamChain that

could deliver even lower latencies and higher throughput.

In the following, in Section 2 we detail the motivation behind this

work, in particular in the context of Hyperledger Fabric. Section 3

overviews the core idea behind StreamChain, whereas Section 4

discusses our implementation. Section 5 contains evaluation results.

Section 6 discusses other techniques that can be applied to Stream-

Chain to further reduce the latency. Finally, Section 7 concludes

the paper.

2 BACKGROUND AND MOTIVATION
StreamChain’s objective is to deliver low end-to-end latency for

distributed ledger transactions. Low latency is often understood as

a performance, non-functional, requirement; in this section, using

Hyperledger Fabric architecture as motivation, we argue that it

may sometimes also be a functional requirement in building per-

missioned blockchains.

2.1 Hyperledger Fabric
Hyperledger Fabric (or, simply, Fabric) is an open source implemen-

tation of a general-purpose permissioned blockchain system. As its

design is substantially different from most other related blockchain

and distributed ledger systems [1, 12], the following sections will

review the design approaches that differ more radically and have

influenced StreamChain.

Separation of execution and consensus. In most distributed ledger

platforms, nodes play a dual role: they both take part in the consen-

sus protocol to agree on a total order of transactions in the system,

and they provide an environment for smart contracts (distributed

applications, or chaincodes) to be executed and for maintaining

their state. In Fabric on the other hand, two types of nodes exist: 1)

ordering service nodes, which are stateless with respect to smart

contracts and only implement a broadcast/deliver interface whereby

incoming transactions are ordered and delivered back to the rest

of the network as a sequence of blocks; 2) peer nodes, which are

consumers of the ordering service, and which maintain the global

state of all smart contracts and handle smart contract invocations

from clients.

Figure 2: Fabric 5-step transaction flow. Nodes that execute
and validate transactions are separate from ordering nodes.

Endorsing and committing. In Fabric, chaincodes are not exe-

cuted on every node in the system, as is the case in most other

platforms (Figure 2). The developer of chaincode is free to select a

non-empty subset of all the peers in the network, called endorsing

peers, and require that each invocation be performed on those. The

set of endorsing peers is defined by an endorsement policy, defined

per chaincode, which also defines a (possibly nested) threshold

expression over endorsing peer identities required for validity of

a transaction. At the same time, all peers maintain the state of all

chaincodes (on a particular shard called a channel). Non-endorsing
peers are called committing peers (for a given chaincode).

Execute-order-validate. Fabric adopts an execute-order-validate

(EOV) programming model, whereby smart contracts are executed

(or more accurately, simulated) by endorsing peers. The simulation

of the smart contract does not lead to immediate updates to the

world state. Rather, state updates are serialized and signed by each

endorsing peer, resulting in a transaction. In the ordering step,

transactions are broadcast to the ordering service, which establishes

a total order among them. After ordering, transactions are inspected

by all peers, which proceed to validate them by checking compliance

against the endorsement policy: if a transaction contains sufficiently

many signatures to satisfy the endorsement policy of the chaincode

that is invoked, the corresponding state update is applied to the

ledger.

The EOVmodel is instrumental in building a systemwhere chain-

code execution can be trivially parallelized without affecting the

correctness of results even in presence of non-deterministic smart

contracts. Furthermore, the EOV paradigm ensures that system

throughput is not gated by the slowest smart contract, and that the

system can scale up by simply adding more endorsing peers.

2.2 Concurrency
The EOV model is best suited to handle UTXO workloads. The

workload takes the name from Bitcoin’s Unspent Transaction Out-

puts. In the Bitcoin case, a transaction spends one or more outputs

(or, coins) by destroying the corresponding state variables and creat-

ing new, unique ones for the recipients of that spend operation. The

concept can be generalized to workloads where execution operates

StreamChain: Do Blockchains Need Blocks? SERIAL’18, December 10–14, 2018, Rennes, France

over variables that are written once at their creation and then modi-

fied only once at the time of their consumption, after which they are

either destroyed or simply archived and never used again. UTXO

workloads are particularly relevant for execute-order-validate sys-

tems since they all but eliminate concurrency issues. Consider for

instance a system that handles the ownership changes of asset-

backed digital tokens. If assets are modelled as one-time-use state

variables that track their current owner, transfer operations can

take advantage of the full parallelism afforded by the execute-order-

validate model since no two legal operations can touch the same

variable.

However in our experience, developers of smart contracts tend to

apply programming patterns reminiscent of declarative sequential

programming and relational databases, generating read/modify/write

workloads on a handful of state variables. The latter are not de-

signed for the execute-order-validate paradigm, given that at least

one of any two transactions that operate on the same state vari-

ables will be marked as invalid by the concurrency control module.

Although most of these applications can be coded in a different

way, that is much less or not at all prone to concurrency concerns,

such coding skills seem not to be widely available.

Reverting to the standard order-execute paradigm of most DLT

platforms [12] would solve the issue of concurrency given the fact

that smart contracts are executed sequentially. However this ap-

proach is undesirable because of the loss of performance, scalability

and the additional complexity required to manage non-determinism.

A viable approach is to offer chaincode developers a richer set of

primitives to interact with the world state in the validation phase,

compared to the simple key-value store that is available in Fab-

ric today, e.g., introducing commutative modify operations (such

as increment/decrements, additions/substractions) to complement

reads and writes. This approach is potentially very powerful and

is explored in the context of Fabric, yet it is non-trivial since it

may lead to the proliferation of many operations, resembling to a

re-introduction of a domain specific language.

It is important to point out that if a zero end-to-end latency

would be achievable, concurrency issues in the EOV model would

not exist. Since zero latency is not possible, our goal with minimiz-

ing latency in EOV blockchain such as Fabric, aims at reducing as

much as possible the number of invalid transactions due to concur-

rency collisions produced by legacy coding approaches (i.e., those

targeting centralized databases, not blockchains). While this does

not eliminate the problem of invalid transactions, it can tremen-

dously help with the “feel” of programming an EOV blockchain,

since collisions on data objects in the millisecond windows are

arguably going to occur much less frequently then those in time

windows at the orders of a second or more. This is precisely the

functional motivation behind reducing latency with StreamChain.

3 STREAMCHAIN
3.1 Idea Overview
Blocks in distributed ledgers provide a means of batching to amor-

tize the cost of solving a puzzle for a proof-of-work system and

to amortize the cost of performing cryptographic operations in

general. Additionally, handling large blocks will make disk-based

operations cheaper. In the case of permissioned ledgers, the cryp-

tographic operations (such as signature checks on transactions)

are parallelizable, and the only expensive operation is disk writes.

Therefore we argue to remove blocks and process transactions as

they arrive, both between ordering nodes and inside the peers. The

only use of batching should be to amortize the cost of performing

persistent operations to the ledger.

In practice, this means that instead of waiting for a complete

block to accumulate, the orderer sends transactions to peers as soon

as their order is determined and a signature afterwards, at regular

intervals (we can think of these as “virtual block boundaries”).

This means that the peers can validate transactions and stage their

changes to the ledger as they arrive, in a streaming fashion. As

a result, the end-to-end latency will be reduced to the latency of

the ordering operation and the validation for a single transaction.

The staleness of data that is used to execute new transaction is also

reduced. Persistence is still ensured at the block granularity and

the failure model of the system remains unchanged.

The operations required for batched (block-based) and streaming

processing are very similar. Signing a block at the end and not at

the beginning does not change the contents of the block, nor the

amount of work required by the orderer because producing the

signature requires anyhow a pass over all the data. The size of the

blocks can be configured freely without affecting the perceived

latency of the system.

3.2 Integration with a CFT Ordering Sevice
When using a crash fault tolerant (CFT) ordering service, Stream-

Chain peers can connect directly to a single trusted ordering node,

whereas in the case of a BFT ordering service (e.g., [10]) they con-

nect to the majority of ordering nodes
1
. The notion of a block is

only necessary to amortize the cost of writing to persistent storage

and to ensure that blocks can be identified and validated offline

(this also maintains backwards compatibility).

3.3 Integration with a BFT Ordering Service
For practical reasons, we further explored a variant of StreamChain

in which peers would connect to a single ordering node even in

the BFT case. In this case, it is necessary to verify the authenticity

of transactions before returning success to the clients. For this,

the peer relies on the periodic signatures that validate previously

received transactions, but it can nevertheless use the staged data

to execute and validate transactions. It is only that a peer cannot

commit the staged data until it receives a correct (multi)signature.

If a wrong signature is received, a peer would have to roll back

staged data. This never results in corrupted state, because previous

simulation/execution that depends on the rolled back data would

also fail in the validation phase.

For this behavior, we rely on the notion of a “materialized version”

of the ledger state (we will call this “state DB” in Fabric) that most

systems already implement. This state DB is typically a key-value

store that also stores the version number of each key-value pair and

is used concurrently by both the execution, validation and commit

operations. In a batch-based validation scheme both the state DB

1
When connecting to t + 1 ordering nodes out of 2t , the peers can stream transactions

from one, and the hashes from the rest.

SERIAL’18, December 10–14, 2018, Rennes, France Zsolt István, Alessandro Sorniotti, and Marko Vukolić

and the ledger on disk are updated at the granularity of a block.

In StreamChain, we envision updating the state DB at transaction

granularity (but rolling back an entire block) and updating the

ledger at block granularity.

To ensure that no transaction that has been executed against

a later rolled-back state passes validation, the version numbers

associated with key-value pairs in the state DB have to encode

their “provenance”. Since it is not enough to use a [block-number,

transaction-number] tuple currently used in Fabric, we propose

including the running hash of transactions in the version number.

4 PROOF OF CONCEPT IMPLEMENTATION
We have built a fairly simple yet realistic prototype version of

StreamChain by modifying the behavior of nodes in Fabric (with

Kafka ordering service), as shown in Figure 3.

In a nutshell, the changes to the ordering service were as follows:

(1) we changed the configuration of the ordering nodes such

that they send out transactions one-by-one

(2) we use ram-disk as a backing storage instead of regular disk

drives to simulate lower overhead flushing to disk

We have also changed the implementation of the peers in the fol-

lowing way:

(1) we implemented parallel validation of transaction signatures

on streaming transactions

(2) we restructured the commit code-path and implemented

software pipelining

(3) we added fine-grained locks to the state DB to allow for

concurrent access

(4) we used a ram-disk as backing storage instead of regular

disk drives to simulate lower overhead flushing to disk

In the following subsections we explain the above changes in more

detail.

4.1 Ordering service
In a streaming setup, transactions are transmitted without signa-

tures from the ordering service, with periodic signatures sent at

“virtual block” boundaries. We simulate this by removing the code

paths creating and verifying signatures from the ordering service

(communication is still over TLS and all endorsers sign transactions

as usual). Since the cost of verifying a block signature is in the order

of 0.5ms on server-grade CPU, it can be neglected for large block

sizes. In a real-world implementation it would still be required,

however, to include a signature periodically from the orderer. To

remove batching delays, we configured the ordering nodes of Fab-

ric to produce blocks with a single transaction inside. These act as

envelopes around the transactions.

As we later show in the Evaluation (Section 5.2), throughput suf-

fers with the default ordering behavior that stores each block to disk

before sending them to peers. In our proof of concept, this would

mean writing each transaction to disk immediately. We simulate

the behavior of writing only entire blocks (which is not latency-

critical anymore), by replacing the SSD backing the orderer with a

ram-disk.

Figure 3: Our StreamChain prototype relies on multiple
forms of parallelism (pipeline, threadpool) to reach high
throughput while offering low latency processing.

4.2 Validation and Committing
Handling transactions in a streaming fashion inside Fabric peers is

straightforward and, as Figure 3 shows, the operations performed

in StreamChain are similar to the ones in Fabric. They have been

reorganized, however, in a way that allows pipelined validation: we

have, on the one hand, parallelized transaction signature checking

across blocks
2
and, on the other hand, implemented a two-stage

software pipeline. Figure 3 shows the steps performed in each

pipeline stage, highlighting the additional parallelism inside the

first stage.

Since the state DB can be accessed concurrently at transaction

granularity by both the committing logic and the execution of

transactions (endorsement), we replaced the single global read-

write lock of Fabric with multiple locks, each covering a subset of

the key-space. This allows more concurrency in the system and,

as a result, lowers the performance impact of committing more

often into the state DB. In our prototype, locks are only held as

long as a key-value pair is being written or read, which means that

the concurrent readers will not see a serializable state. While this

opens up a venue for discussion, our reasoning was that if data

that an execution (simulation) relies on has been changed by a

committing transaction, the validation of the simulated transaction

will fail anyhow. The outcome of committed transactions, however,

is guaranteed to be linearizable.

As for storage access, to simulate the amortized cost of disk

accesses over hundreds of transactions, we have set up the state

DB and the ledger such that they are backed by main memory (a

ram-disk). This simulates the expected behavior of a full-fledged

implementation that would only periodically synchronize state to

disk.

5 EVALUATION
We ran our experiments on 9 peers in the IBM Cloud. Each peer

has 16 virtual cores (equivalent to 2GHz Intel Xeon E5-2683 cores),

16GBs of memory, SSDs, and a 1Gbps network connection. The

workload we execute is composed of MINT transactions of the

Fabcoin application as described in [1], with performance reported

2
Since Fabric 1.1 transaction signatures are verified in parallel inside a block. We use a

similar mechanism but allow it to parallelize across blocks.

StreamChain: Do Blockchains Need Blocks? SERIAL’18, December 10–14, 2018, Rennes, France

10
1

10
2

10
3

StreamChain

Fabric (Fabcoin)

End-to-end latency (ms)

Figure 4: Per-transactions latencies are 34x lower in Stream-
Chain than for Fabcoin running on Fabric.

Fabric (Fabcoin) StreamChain

0

20

40

60

80

100

P
e
r
c
e
n
t
a
g
e
o
f
t
o
t
a
l
t
i
m
e

Execution

Ordering

Signature val.

R/W Set val.

Commit

Figure 5: As expected, using blocks increases latencies of or-
dering step, to the level that it dominates all other opera-
tions.

in that work serving as a baseline. Furthermore, we based our

ordering service configuration on the setup in [1], namely, four

nodes were used for running Kafka and one for the Fabric orderer.

5.1 Latency
Figure 4 shows the absolute gains in end-to-end latency of Stream-

Chain over our baseline (that uses batches of 473MINT transactions

on average), reducing it from 370ms to 10ms. Reflecting back to the

discussion in Section 2, this turnaround time is fast enough to allow

clients to run in a closed loop and still execute 100 transactions per

second for a pure read-modify-write workload.

The end-to-end latency in Fabric comes from four main sources:

endorsement (execution), ordering, validation, and network com-

munication time. Since we focus on local-area networks, the latter is

negligible. StreamChain does not change the cost of endorsements,

so the difference between the two systems is to be found in ordering

and validation. Figure 5 shows the importance of the above factors

in both systems (100% refers to the total end-to-end latency of each

variant). In Fabric, as expected, most of the latency comes from the

batching inside the orderer (67%). Furthermore, since every trans-

action in a block incurs the full validation delay of the block, these

account to more than 30% of the latency and endorsement cost

per transaction is negligible. In the case of StreamChain, however,

ordering and validation contribute almost equally to the latency,

and endorsement has a more accentuated effect (for Fabcoin, the

0 1 2 4 6 8 16

0

500

1,000

1,500

No pipelining

No. of worker threads used for signature check

T
h
r
o
u
g
h
p
u
t
(
t
r
a
n
s
a
c
t
i
o
n
s
/
s
)

StreamChain

Orderer commits to disk

Peer commits to disk

Figure 6: Throughput of a node (running only the valida-
tion logic) scales well with increasing parallelism for TX sig-
nature checking up to 6 cores. After that point the second
pipeline stage (MVCC+Commit) becomes the bottleneck.

0 500 1,000 1,500
0

5

10

15

Throughput (Transactions/s)

C
o
m
m
i
t
t
i
n
g
p
e
e
r
l
a
t
e
n
c
y
(
m
s
)

Figure 7: The cost of validation increases very little with
throughput. Even close to saturation it is under 12ms.

code performing endorsements runs inside a docker container, as

a result there are significant communication and data marshaling

overheads in that operation).

5.2 Throughput
Changing the way blocks are handled and constructed in the system

solves the latency problem, but when all steps of the validation

logic are executed sequentially inside the peer, throughput levels

will suffer. This is illustrated by the leftmost points in Figure 6, that

represent execution on a single thread with no pipelining inside the

peers. If we enable pipelining in StreamChain, throughput increases

by a factor of three, then it reaches a plateau around 150 TX/s. The

reason for this is that in our current implementation, the time

spent in the second pipeline stage is around 0.65ms on average per

transaction, which limits the maximum throughput (unless this

stage would also be parallelized internally).

Figure 6 shows two additional lines, to demonstrate the through-

put of the system when the orderer, or both the orderer and the

peers persist changes to an SSD, synchronously, for each transac-

tion. Not surprisingly, throughput is quickly capped by turnaround

times to the disk.

SERIAL’18, December 10–14, 2018, Rennes, France Zsolt István, Alessandro Sorniotti, and Marko Vukolić

Figure 7 shows validation latency at a peer in function of through-

put. The minimum time spent in this step is 2.15ms, but even close

to saturation StreamChain delivers reliably low latencies (as op-

posed to the results in [1], where even at low throughput levels this

step takes more than 100ms).

It is important to note that the latency values are an upper bound

of a full-fledged implementation because in our prototype the state

DB has not been optimized for main-memory based operation and

it is, in essence, the same disk-oriented key-value store as in Fabric

but running on top of a ram-disk.

6 DISCUSSION
6.1 From Proof-of-concept to Production
Here, we discuss additional traits that a future efficient production-

grade implementation of StreamChain should possess.

Handling frequent state updates. First, the data structure backing
the state DB should be designed for main-memory and allow con-

current readers and writers. Specifically, for Fabric, this described

behavior could be achieved by introducing a main-memory-based

caching layer on top of persistent LevelDB (currently used to imple-

ment the state DB). Execution of transactions and validation should

happen exclusively using the cache, and its changes should be only

occasionally written back to LevelDB (e.g., at block boundaries).

State updates on disk are also relevant to the ordering nodes,

that, as shown in our experiments, will become a bottleneck if

each transaction is synchronously flushed to disk (unless using

higher IOPS flash-based storage). Thanks to the removal of explicit

blocks, the ordering service is free to implement mini-batches if

that helps it amortize disk access cost, without any assumption on

peer behavior.

Parallel crypto operations. Second, to achieve high throughput,

the impact of crypto operations has to be reduced through paral-

lelism and pipelining. Fabric’s design is naturally amenable to such

pipelining but other, similar, systems should be able to support this

behavior as well. While it is, in principle, possible to parallelize

other validation operations as well across transactions (e.g., par-

allelize checking whether transactions conflict on the keys they

accessed for reading/writing by exploiting disjoint read-write sets),

assuming a main-memory-optimized state DB, the cost of these

operations will decrease significantly in the future.

6.2 Other Solutions without Blocks
There is an emerging class of distributed ledgers that do not incor-

porate the notion of blocks at all and operate on a per-transaction

basis. Two well known examples are Corda [3] and IOTA [9], which

have been designed with a very specific financial services use-case

in mind. The data structure they store data in is not a single chain,

but rather a directed acyclic graph (DAG). This allows them to

execute transactions between various subsets of the peers in the

network and removes the burden of global ordering, but also makes

comparisons with more traditional distributed ledgers, such as Hy-

perledger Fabric, difficult.

The decision of batching as a performance optimization, as well

as streaming execution is, however, orthogonal to the underlying

data structure. StreamChain provides several design advisories that

could be applied to Corda or similar systems as well and increase

their end-to-end throughput without affecting latencies.

7 CONCLUDING REMARKS
StreamChain demonstrates that it is possible to reduce latencies by

an order of magnitude in today’s permissioned distributed ledgers

without significantly affecting throughput.We achieved this through

a simple modification to how blocks are constructed and treated.

The technique of switching Fabric over to a stream-based process-

ing should be applicable to other similar systems as well.

Beyond the non-functional improvements, the lower latencies

alleviate the staleness problem for EOV systems, enabling a wide

range of previously unfeasible use-cases. In the financial sector,

for instance, distributed ledgers are only considered for settlement

purposes, but with low enough latencies, trading could also become

a possibility.

Our experiments also show that in order to push end-to-end

latencies to sub-millisecond levels, the ordering service will have to

be chosen carefully. It is likely that advanced networking features

such as RDMA [8], or implementations using hardware accelera-

tors [5, 6] will have to be used. The most challenging question in

this space is how to combine BFT guarantees with such specialized

hardware solutions.

REFERENCES
[1] Elli Androulaki et al. 2018. Hyperledger Fabric: a distributed operating system

for permissioned blockchains. In Eurosys 2018.
[2] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevic, Vivien Quéma, and

Marko Vukolić. 2015. The Next 700 BFT Protocols. ACM Trans. Comput. Syst. 32,
4 (2015), 12:1–12:45.

[3] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. 2016. Corda:

An introduction. R3 CEV, August (2016).
[4] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and

proactive recovery. ACM Transactions on Computer Systems (TOCS) 20, 4 (2002),
398–461.

[5] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos

made switch-y. ACM SIGCOMM Computer Communication Review 46, 2 (2016),

18–24.

[6] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolić. 2016. Consensus

in a Box: Inexpensive Coordination in Hardware.. In NSDI’16. 425–438.
[7] Manos Kapritsos et al. 2012. All about Eve: Execute-Verify Replication for Multi-

Core Servers.. In OSDI, Vol. 12. 237–250.
[8] Marius Poke and Torsten Hoefler. 2015. Dare: High-performance state machine

replication on rdma networks. In HPDC’15. ACM, 107–118.

[9] Serguei Popov. [n. d.]. The tangle (2017). URL https://iota. org/IOTA_Whitepaper.
pdf ([n. d.]).

[10] João Sousa, Alysson Bessani, and Marko Vukolić. 2018. A Byzantine Fault-

Tolerant Ordering Service for the Hyperledger Fabric Blockchain Platform. In

DSN 2018. 51–58.
[11] Marko Vukolić. 2015. The Quest for Scalable Blockchain Fabric: Proof-of-Work

vs. BFT Replication. In Open Problems in Network Security Workshop (iNetSec).
112–125.

[12] Marko Vukolić. 2017. Rethinking Permissioned Blockchains. In Proceedings of
the ACM Workshop on Blockchain, Cryptocurrencies and Contracts (BCC ’17). 3–7.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Hyperledger Fabric
	2.2 Concurrency

	3 StreamChain
	3.1 Idea Overview
	3.2 Integration with a CFT Ordering Sevice
	3.3 Integration with a BFT Ordering Service

	4 Proof of concept implementation
	4.1 Ordering service
	4.2 Validation and Committing

	5 Evaluation
	5.1 Latency
	5.2 Throughput

	6 Discussion
	6.1 From Proof-of-concept to Production
	6.2 Other Solutions without Blocks

	7 Concluding Remarks
	References

