
Histograms as a Side Effect of Data Movement for Big Data

Zsolt István Louis Woods Gustavo Alonso
Systems Group, Dept. of Computer Science

ETH Zürich, Switzerland

{firstname.lastname}@inf.ethz.ch

ABSTRACT
Histograms are a crucial part of database query planning but
their computation is resource-intensive. As a consequence,
generating histograms on database tables is typically per-
formed as a batch job, separately from query processing. In
this paper, we show how to calculate statistics as a side effect
of data movement within a DBMS using a hardware accel-
erator in the data path. This accelerator analyzes tables as
they are transmitted from storage to the processing unit,
and provides histograms on the data retrieved for queries
at virtually no extra performance cost. To evaluate our ap-
proach, we implemented this accelerator on an FPGA. This
prototype calculates histograms faster and with similar or
better accuracy than commercial databases. Moreover, the
FPGA can provide various types of histograms such as Equi-
depth, Compressed, or Max-diff on the same input data in
parallel, without additional overhead.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

Keywords
FPGA, Statistics, Histogram, Query Optimization

1. INTRODUCTION
Statistics such as histograms play an important role in

modern databases. They have been long used for query op-
timization, where they influence, e.g., how the data is ac-
cessed or what join algorithm is used. Furthermore, now
that we have entered the era of big data, histograms and
statistics in general are becoming even more important: be-
sides standard query optimization decisions, knowing the
data distribution could also influence the choice between
different types of CPU cores, the amount of data moved be-
tween different computing nodes, etc. One important prop-
erty of histograms is that they are useful only when accurate
enough and up-to-date, but updating them takes processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD/PODS’14, June 22 - 27 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2612174.

power away from query processing. As a result, histograms
are mostly calculated in maintenance windows, and often
with sampling, to reduce their impact on response time [37].
However, the sheer amount of data that needs to be pro-
cessed means that the traditional techniques for statistical
analysis and histogram creation will be increasingly diffi-
cult to apply. Take for instance the previously mentioned
case of sampling: in order to balance execution time and
accuracy, most modern databases do not calculate the his-
tograms on the full data but on a small sample. While this
approach provides good results if the sample is representa-
tive [5], when the time budget for statistical computation is
small, the sampling rate could become so low that reasonable
accuracy can not be guaranteed for the resulting histogram.

In this paper, we introduce the idea of statistics calcu-
lated on the data path. By moving the task of calculating
histograms to a specialized hardware device, we can obtain
them virtually for ‘free’ every time we retrieve a table from
any form of storage, i.e., without throttling throughput and
by only adding negligible latency. Apart from the obvious
benefit of off-loading the calculation of histograms to an ac-
celerator, which frees computing cycles on the CPU, there is
also a second benefit: If histograms can be refreshed every
time a table is scanned, the global freshness of statistics will
be higher than that of current systems.

As a proof of concept, we have implemented a statistical
accelerator using a field-programmable gate array (FPGA)
that, to our knowledge, is the first of its kind. With this pro-
totype we show that not only the histograms are calculated
faster than on a CPU but also that we can provide many
different types of histograms (Equi-depth, Compressed, and
Max-diff) at no additional performance cost. The main ben-
efit of using FPGAs is that due to their inherent parallelism
they can stream the data through, minimizing the added
latency, and calculate the histogram in parallel at the same
time. In future systems, the FPGA could be replaced with
an application-specific integrated circuit (ASIC), which has
the same advantages but consumes less power, or with a
small specialized processor attached directly to storage [10].

Contribution. In this paper, we revisit the state-of-the-
art in histograms for databases and propose an accelerator
in the data path for building histograms as a side effect
to data movement. We implement a prototype of such an
accelerator using an FPGA. We show that the FPGA can
handle high throughput and very large table sizes – both
crucial for processing big data. By implementing canonically
accepted histogram types we can also guarantee accuracy on
the statistics derived by the accelerator.

1567

 0

 100

 200

 300

 400

 500

 600

2000
5000

10000

20000

J
o
in

 t
im

e
 (

s
)

Value of x (line 10) in Q1

With accurate statistics

With outdated statistics

Figure 1: Effect of fresh statistics on query plans

Outline. The rest of this paper is structured as follows:
We motivate our work with an example, and then relate
to other work in Section 2. Section 3 discusses the most
common histograms used in modern databases. In Section 4,
we present the architecture of our system on a high level
before covering the implementation details in Section 5. We
evaluate our approach in Section 6, discuss ideas for future
work in Section 7, and conclude in Section 8.

2. MOTIVATION AND RELATED WORK
In this paper, we propose a hardware accelerator for cal-

culating accurate histograms on tables retrieved in full table
scans, at no additional CPU cost. To understand the impor-
tance of accurate histograms, consider an example query on
two TPC-H [8] tables, lineitem and customer, that highlights
how the query planner decisions are influenced by statistical
information in commercial databases. The query calculates
a derived final price for items that have some base price, and
then counts the number of such entries per client that have
a balance larger than the final price:

1 with somelines as
2 (
3 select (l_tax*l_extendedprice) as val
4 from lineitem
5 where l_extendedprice=2001 --skewed value
6)
7 select customer.c_custkey, count(*) as cnt
8 from customer, somelines
9 where somelines.val<customer.c_acctbal

10 and customer.c_custkey<x --parameter
11 group by customer.c_custkey;

(Q1)

We ran this query on a widely used commercial database,
and observed that the number of lines matching the base
price changes the optimal query plan. To demonstrate this
effect we generated lineitem with 60 million rows (scale fac-
tor 10), then increased the number of records with price
“2001” to 120,000. When we ran Q1 after updating these
lines, without refreshing statistics, the database was operat-
ing under the assumption that the value “2001” appears less
than fifty times in the l extendedprice column, as the initial
statistics on lineitem suggested.

Since statistics gathering needs to be explicitly triggered
in databases1, even after running the query multiple times,

1For instance, in Oracle this can be done with the following
command: DBMS STATS.GATHER TABLE STATS. The
columns to analyze, the number of buckets in the histogram,
and the sampling rate can be specified as parameters.

 0

 50

 100

 150

 200

 250

Histogram 100%

Histogram 50%

Histogram 20%

Histogram 10%

Histogram 5%

Table scan

E
xe

cu
tio

n
tim

e
(s

)

Database task

Lineitem on disk
Lineitem in memory

Figure 2: Even with sampling, analysis is more expensive
than a full table scan in databases

the query planner was producing the same sub-optimal plan.
Figure 1 shows that after updating the statistics on the col-
umn, the query planner correctly adjusted the plan, which
resulted in better query performance. The main difference
between the two query plans is the order in which the tables
are joined with Sort Merge Join; and that when running
with outdated statistics, the database underestimates the
size of one of the join tables by almost four orders of magni-
tude. As Figure 1 also illustrates, by increasing the number
of matching items in the customer relation, the effect can
be further amplified – this highlights that even for simple
queries fresh statistics are very important.

In the case of this particular example, the query planner
error can be easily avoided by updating the histogram on the
l extendedprice column. In commercial databases however,
even with sampling, statistics collection is an expensive pro-
cess. Figure 2 illustrates how long it takes for the database
to update the histogram with different levels of sampling on
one column of the TPC-H lineitem table (scale factor 10)
residing on disk and in memory. Additionally, we included
in the figure the time it takes to perform a very simple query
with a full table scan on the same data. This is to show how
much more work the database performs to build a histogram
even from only a 5% sample compared to answering a query
with a full table scan. While not discussed here, in Sec-
tion 6.2 we show that sampling may also negatively affect
query planning. This is why providing histograms built from
the complete data, delivered with no performance penalty
as a by-product of full table scans, is a valuable addition to
modern database systems.

Related Work. In this paper we propose a statistics ac-
celerator that passively operates on the data that is moved
to the processor for query processing. A similar idea, though
using conventional CPUs, was first proposed by Zhu et al [37].
The key idea is what Zhu et al. call the piggyback method,
that collects statistics by piggybacking additional data re-
trievals during the processing of a user query in order to
update existing statistics. While this method improves the
freshness of histograms, the CPU still has to process the
data and derive the statistics. The authors admit that as a
consequence their method may slow down query processing
in favor of more up-to-date statistics.

Using an accelerator to compute statistics was previously
suggested by Heimel et al. [13]. In this work, a GPU was

1568

#
o
cc

u
rr

en
ce

s

values

Figure 3: Equi-width

#
o
cc

u
rr

en
ce

s

values

value = 13
count = 100

Figure 4: Equi-depth

used to provide the query optimizer with statistics such as
range selectivity estimations. However, the authors observe
that copying whole tables to the GPU quickly becomes a
bottleneck, and therefore they rely on sampling for larger ta-
bles. This means that even though the parallel resources on
the GPU provide the estimates much faster than the CPU,
the solution still suffers from all the drawbacks of sampling.

Utilizing specialized hardware in the data path to com-
pute statistics as a side effect does not suffer from these
shortcomings, and the existence of such accelerators is rea-
sonable since many systems are already using similar ac-
celerators today to improve query performance. For in-
stance, IBM/Netezza’s data warehouse appliance [15] uses
FPGAs close to storage to which it pushes simple SQL op-
erators. The work in [4] explores FPGAs as accelerators
for join operations in columnar main-memory databases; in
Cipherbase [2] they are used for encrypted SQL query pro-
cessing, and in [9, 35] for partial SQL query execution. Fur-
thermore, smart SSDs [10] and flash stores [18] have been
proposed, which exploit the processing elements inside stor-
age devices to off-load different database operators.

In the bigger picture, specialized hardware, and FPGAs in
particular, have been successfully used in many areas of data
processing, e.g., for pattern matching and XML filtering [21,
34, 32], network intrusion detection [36], traffic control in-
formation processing [33], algorithmic trading [29], stream-
ing query execution [24, 30, 23]. Furthermore, FPGAs have
been recently used even for accelerating main-memory dis-
tributed hash tables [1, 6, 17].

3. HISTOGRAMS IN DATABASES
In this section, we revisit the most common types of his-

tograms used in databases today [16]. It is important to un-
derstand the high-level differences between these histograms
before we discuss the hardware implementation of each of
them (Section 5). To illustrate these differences, we con-
sider an arbitrary data distribution, which we use for Fig-
ures 3 through 6. These figures have on the x-axis the dif-
ferent values and on the y-axis their count as bars. The
histogram buckets are blue rectangles. The area of every
rectangle corresponds to the total count of a bucket. Within
a bucket, uniform distribution is assumed, i.e., the height of
the rectangle corresponds to the estimated count of each
value within the respective bucket.

#
o
cc

u
rr

en
ce

s

values

Figure 5: Compressed

#
o
cc

u
rr

en
ce

s

values

Figure 6: Max-diff

Equi-width Histogram. The simplest histogram is the so-
called equi-width histogram, displayed in Figure 3. It divides
the value range into n buckets and then counts the number
of occurrences in each bucket. In Figure 3, the value range is
divided into n = 10 buckets. Each bucket counts the number
of occurrences of five consecutive values in this range. This
type of histogram is easy to construct in linear time using
bucket sort [7] (sometimes referred to as bin sort). However,
as can be seen in Figure 3, this histogram does not represent
skewed data very well, which is why equi-width histograms
are seldom used in databases.

Equi-depth Histogram. A more common histogram used
in databases is the equi-depth histogram, which represents
skewed data more accurately. PostgreSQL, Oracle and DB2
all use some version of this histogram. In an equi-depth his-
togram, all buckets have an equal or close to equal count
but the value range that a bucket spans is no longer fixed.
A common way to generate an equi-depth histogram is to
first sort the data. The bucket boundaries are then given
by the values found at every #occurrences/n position in the
sorted data. Figure 4 displays an equi-depth histogram con-
structed from the same data used to generate the equi-width
histogram in Figure 3.

Compressed Histogram. While the equi-depth histogram
handles skewed data better than the equi-width histogram,
heavy hitters are still a problem. For instance, in Figure 4,
a single value (the annotated bar) appears more often than
any other item, but its count is not high enough to occupy
a full bucket – when estimating the values belonging to this
bucket some of them will be overestimated, and the peak will
be underestimated. The so-called Compressed histogram
mitigates this effect by counting the most frequent values
separately and then generating an equi-depth histogram on
the remaining values. Figure 5 shows a Compressed his-
togram, where the five most frequent values are counted
separately.

V-Optimal and Max-diff Histogram. Poosala et al. [27]
proved that from all possible histograms, the so-called v-
optimal histogram provides the best approximation on the
real data distribution. In this type of histogram the bucket
boundaries are chosen such that the variance within every
bucket is minimized. However, computing a v-optimal his-
togram is prohibitively expensive [27], which is why these
histograms are not used in practice. A heuristic that is eas-
ier to compute and approximates a v-optimal histogram is
the Max-diff histogram, which is implemented in Microsoft’s

1569

Figure 7: Explicit (top) vs. implicit (bottom) accelerator

SQL Server [20]. In a Max-diff histogram the bucket bound-
aries are positioned where the difference in occurrence count
are maximal between adjacent pairs of values. This is a
much easier optimization problem than minimizing the vari-
ance within buckets, as in the v-optimal histogram. In Fig-
ure 6, a Max-diff histogram is depicted, representing the
same data as the other histograms in this section.

Automated Statistics. Since histogram calculation and
statistic gathering is a costly operation, with many parame-
ters, most modern database engines offer automated statis-
tic gathering on the tables. Oracle [26], IBM DB2 [14] and
Microsoft SQL Server [19] all will decide based on the table
contents and workloads which tables need statistics, which
columns need more detailed statistics such as histograms,
and when to update the statistics for different tables. While
these methods are effective, they operate under a very strict
time budget, meaning that statistics and histograms cannot
be refreshed as often as they should be. This is why using
accelerators is highly beneficial: the automated tools could
operate at higher efficiency, and refresh statistics more fre-
quently than before.

4. SYSTEM OVERVIEW
An accelerator can be integrated into a system either as

an explicit accelerator located on the side of the host system,
or as an implicit accelerator, one that is on the data path
(Figure 7). The fundamental difference between the two is
that while the former needs to be accessed explicitly, and
data needs to be copied to it, the latter is active every time
data is streaming through it. In our case this means that
histograms can be calculated every time data is retrieved
for processing, as opposed to on demand, when the host de-
cides to send data to the accelerator. Copying data from the
CPU to the accelerator might not even be feasible without
disrupting query processing if the tables are very large. By
contrast, the only important requirement of an accelerator
on the data path is that it must not introduce significant la-
tency into the data stream. In this paper, we show that it is
possible to offer sophisticated histograms and still guarantee
only a negligible delay in the data stream.

FPGAs. We chose to implement our prototype system us-
ing an FPGA because FPGAs are well suited for dataflow
type applications [22, 36], and can handle stream processing
very well [29, 30, 23]. This makes them an ideal candidate
for statistical accelerators, because we can dedicate hard-
ware circuits to forward the incoming data, and use other
parallel parts of the chip for calculating histograms. This
way, the only cost of calculating histograms on the FPGA
from the point of view of the host is the time it takes to
stream the original data through the FPGA.

Figure 8: The conceptual steps performed in the accelerator

Figure 8 depicts the main steps that need to be carried
out to produce histograms, and Figure 9 shows the imple-
mentation on the FPGA, consisting of the corresponding
three modules: Parser, Binner and Histogram creation. In
the following we will refer to the collection of these three
as the statistical circuit. The role of the Parser is to parse
the input data (database pages), and to keep only the col-
umn that will be processed by the rest of the circuit. The
choice of the column is communicated by the host, with a
metadata packet piggybacked on the original command to
the data storage. To this end, the logic to filter the col-
umn of interest is a simple counting state machine. The
second stage in the global pipeline is the Binner module,
which calculates the in-memory sorted representation of the
data on the streaming input. Finally, the Histogram module
reads this representation from memory and uses it to build
various histograms – Equi-depth, Max-diff and Compressed.
These two modules are decoupled in their operation, since
they only interact through regions in memory. This means
that while for some data the histogram is calculated in the
Histogram module, another input table can be already pro-
cessed and binned at a different region in memory.

Histograms in linear time. Even though FPGAs excel at
pipeline processing, the available on-chip memory (to keep
state) is very limited, and the off-chip high-capacity mem-
ory is much slower to access. As a result, we were looking
for ways to minimize the state required for performing the
steps depicted in Figure 8. Parsing can be done in constant
space and time with a simple finite-state machine (FSM).
More challenging is the binning step, in which the data is
radix sorted and aggregated in memory. For this we use an
algorithm that runs in linear time, requires constant state
and the amount of memory depends not on the size of the
dataset but its cardinality. Inspired by the bin sort algo-
rithm [7], the FPGA will associate a memory range with the
range of values in the column. Assuming that the data in
the column is of integer or fixed-point type, its correspond-
ing count aggregate in memory can be updated directly on
every appearance. Once the whole dataset has streamed by,
the memory will hold a sorted view of the data. As later
explained, the histogram creation step can also be carried
out in linear time on the binned data. Since the cardinality
is always smaller or equal than the input data set, the whole
circuit will run in linear time, and require linear memory to
store the sorted view.

Histograms as a side effect. As already mentioned, an
accelerator in the data path is most useful if it never slows
down the regular flow of data to the host. To fulfill this
goal, our design, shown in Figure 9, has a dedicated cut-
through path for the data going from storage to host. The
actual statistical calculation is performed on a copy of the
input, obtained by introducing a Splitter in the data path
that duplicates the data flow. In terms of throughput, the
FPGA can easily implement complex logic at 10 Gbps or
even 100 Gbps throughput [17, 11, 3], so a cut-through path

1570

Figure 9: The FPGA implements cut-through logic for the
data stream, and performs statistical operations on the side

should never be the bottleneck. As for latency, the delay
introduced by the FPGA on the data is the combination of
the Splitter and the I/O logic of the FPGA. The latency of
the Splitter is in the order of nanoseconds, as it only needs
to replicate the data, and the I/O logic’s latency usually is
in the order of microseconds, depending almost exclusively
on the transmission medium and protocol. When compared
to the retrieval time of large database tables, these latencies
become negligible.

The latency of the core statistics circuit, which operates
asynchronously and in parallel to the cut-through logic, can
be broken down to 1) parsing, 2) binning and 3) histogram
building. The time it takes for the Parser to extract the rel-
evant information from the input rows depends on the data
source type, but based on the current state of the art for FP-
GAs and with a conservative estimate, it can be performed
with an FSM below 2µs for all data source types. The Bin-
ner module’s latency is dominated by the memory access
latency, which in our development platform was measured
to be on average around 0.4µs (60 cycles at 150 MHz). The
latency added by the Histogram module is the only latency
in the millisecond range, and is not constant but grows with
the number of bins residing in memory. A detailed discus-
sion on the latency of different operations in this module is
presented in Section 6.3.

Memory acts as a decoupling element between the Binner
and the Histogram module, as they interact in a producer-
consumer-like manner. As a result of this separation, only
the throughput of the Binner module needs to be large enough
to handle all input data without dropping rows. As we dis-
cuss in Section 6, in our prototype the bottleneck is the
memory access rate, but even so we can handle sufficiently
high input rates.

Based on the above analysis it is safe to say that the FPGA
indeed is just a “bump in the wire”, and that it will not de-
grade the read/write performance of the system. Since the
histogram calculation happens in parallel to data transmis-
sion, and does not interfere with it.

5. IMPLEMENTATION
In this section, we focus on the implementation of the two

most important modules of the statistical circuit: the Binner
and the Histogram module.

5.1 Binner Module
Figure 10 shows the high-level view of the Binner module,

composed of a preprocessor and a pipeline that interacts
with off-chip memory. It is configured and fed with data by

Figure 10: Binner: Module that processes the input stream
into bins in memory

the Parser module, and its control output is connected to
the Histogram module.

5.1.1 Preprocessor
Before the bins can be updated in memory, the input val-

ues need to be translated into actual memory addresses. The
transformation from value space (contents of the column) to
address space (the corresponding memory location) is the
simplest for integer-type columns: for these it is enough to
subtract the minimum value in the column from all values,
and use the difference as an address. It is also possible to
divide the values by some constant to assign multiple values
to the same bin. This is useful when the granularity of in-
terest is higher than that of the underlying data type. As
an example, a column could store date values that change
with the granularity of days, but the representation could
be a second-based timestamp in the database. Additionally,
databases often store data using their proprietary formats.
For instance Oracle stores date objects not as a single epoch
number, but unpacked, encoding the year, month, day, etc.,
explicitly [25]. The preprocessor can be used to convert a
handful of predefined unpacked types to integers. This way,
even if the internal representation is not a single integer, it
is possible to calculate histograms on the column.

5.1.2 Pipeline
The Binner performs a bin-sort [7] operation, where values

of the column are mapped to bins, and the counter in the
bin is incremented on every appearance of the value. In
software, this logic would be implemented as a tight loop:

for all input items {
index = preprocess(input)
array[index]++

}

The above representation however hides some of the com-
plexity of interfacing with memory. In order to increment a
bin count multiple operations have to be performed on the
memory, which means that every iteration of the loop will
take time in terms of memory latency. To hide this latency,
we can break the loop up into a pipeline. We annotated each
operation with the name of the pipeline stage that performs
it below:

pipeline input items {
index = preprocess(input) [PREPROCESS]
count = array[index] [READ]
newcount = count + 1 [UPDATE]
array[index] = newcount [WRITE]

}

These stages can be performed in parallel for different items,
which means that we are not bound anymore by the memory

1571

Figure 11: Histogram module: built from a series of statistic
blocks which process the bins in a pipeline

access latency, but simply by the number of access opera-
tions the memory can handle per second, i.e. the pipeline
can take full advantage of the memory.

The implementation of each pipeline stage follows intu-
itively from the pseudocode description. The read stage
takes the addresses created by the preprocessor, and con-
verts them into read commands to the memory. The physi-
cal read address in the memory may differ from the logical
index of items because memory lines pack multiple bins (in
our implementation eight). Once a read command has been
issued, the logical address is put into the FIFO queue be-
tween the read and update stages. It is necessary to buffer
the logical address so that the read stage can issue multiple
commands to the memory while the update stage is waiting
for the read data. When the memory provides the requested
data, the update stage will pop an item from the queue, and
increment the bin corresponding to the logical address and
pass the updated memory line and the address to the next
stage. The write stage will write back the memory line, and
increment an internal counter that keeps track of the total
number of items processed, which will be used in the his-
togram building phase. When the last input item reaches
the write stage, the Binner module will send the total count
to the Histogram module, signaling that it finished.

5.1.3 On-chip Caching
One issue with the pipeline presented above is that when

two identical values follow each other, so called “read after
write” conflicts can occur. Due to the high latency of the
off-chip memory, it can happen that the second value will
cause a read from memory before the incremented bin from
the previous value could be stored back to memory. To
overcome this issue, an often utilized technique for FPGAs
is to simply stall the pipeline until it is certain that the
first write was finished [12]. In our case this behavior is not
acceptable, because it would mean that the processing speed
of the circuit is dependent on the contents of a column. We
want to guarantee same performance for the Binner module,
regardless of the amount of skew in the data distribution.

To ensure that the circuit can always process items at
the maximum speed allowed by the memory, we dedicate
a small amount of on-chip memory to be used as a cache
(1KB), which in essence forwards the values of recently ac-
cessed bins between the pipeline stages. The cache is a write-
through cache whose size is adjusted to be able to store the
maximum number of items that can arrive in the fixed time-
frame defined by the memory access latency. The memory
lines are stored on a small on-chip block RAM (BRAM),
and this BRAM is indexed with the help of a lookup ta-
ble that stores the memory addresses belonging to the items
currently in the pipeline. Whenever a new item enters the
pipeline, its data is either served from memory, or if fresher
data is available, it is retrieved directly from the cache. The

Figure 12: The TopK block implements a sorted list that
stores the largest frequencies seen so far

architecture of this cache is highly scalable, and it can be
easily ported to other memory types with higher or lower
latency.

5.2 Histogram Creation and Statistics
The histogram building step begins once all the values in

a column are binned in memory. The histogram building is
carried out by the Histogram module, which is a pipeline
internally. As shown in Figure 11, the first block in the
pipeline is the Scanner block that scans the area of memory
that contains the bins associated with the processed column.
The start address and the amount of memory to read is
provided by the Binner module after it completed processing
the last input item.

As soon as the Scanner block starts receiving data from
memory, it passes on the bin counts to a daisy-chain of sta-
tistical blocks. These blocks implement different histogram
types or calculate different statistical properties on the in-
put data. What they have in common is that they always
relay the input unchanged to the next block. As we will
show later, there are some blocks that need multiple scans
of the bins – these blocks can tell the scanner through a
feedback channel (repeat) to read and stream the bins again
if necessary. Apart from the input and output ports used
for streaming the bin data, these blocks also have a “result
output”, a port on which they communicate the histograms
to the host.

For the Histogram module we have implemented four dif-
ferent types of statistics algorithms (and as a consequence,
there can be up to four different types of statistical blocks
in the chain). These are: a list of the most frequent items
(TopK), as well as histograms of type equi-depth, Max-diff
and Compressed. In the following we will explain first how
the TopK block and the equi-depth histogram work, and
then show how, by simple modifications to these two, we
can build blocks that calculate the other two types of his-
tograms.

5.2.1 Basic Blocks
Some operations on the sorted bin data can be performed

in linear time, with only one scan of the data. We have
implemented two such operations: maintaining the list of K
most frequent items (TopK) and an equi-depth histogram.

Equi-depth Histograms. The block that calculates the
equi-depth histogram is initialized with the number of his-
togram buckets to create, and the total number of items as
counted by the Binner module. The number of buckets to
create is a parameter of this block that is stored in a small
on-chip memory. As a consequence, it is possible to change
this value when a read request is sent. This gives the host
flexibility of choosing the granularity of the histogram.

1572

Figure 13: The Max-diff histogram is calculated in two
scans, using modified TopK and equi-depth blocks

In an equi-depth histogram the sum of frequencies in each
bucket should be equal to the total sum of frequencies divided
by the number of buckets. Therefore, as a first step, this
block will divide the total count of items (provided by the
Binner module) by the number of buckets this block is con-
figured to produce, and store the result in an internal mem-
ory. When bins are streamed through this block, both a
running sum and the count of bins are maintained. When
the sum is larger or equal than the limit, a new bucket is
created. While the buckets might be larger than the limit,
they will always contain all appearances of the same item
in one bucket. This behavior is identical to Oracle’s hybrid
equi-depth histograms. The final output of this block con-
sists of the aggregate sum in the bucket and the number of
bins in it.

TopK. One way of finding the bins with the highest count
is to sort them by their count. To carry out this operation in
software most likely an algorithm such as quick-sort would
be chosen, but on the FPGA there is not enough on-chip
memory to act as intermediary storage for all bins while
being sorted (accessing the off-chip DRAM for sorting pur-
poses is not an option due to the very high access latency).
Our solution is to use a sorting method inspired by insertion
sort (like in [31]) that can be implemented using a pipeline
structure. The role of the TopK block is to provide only the
K highest ranking elements, so the list used for the insertion
sort can be bounded at K. The pipeline, shown in Figure 12,
consists of items entering on the left side and propagating
through all elements of the list. If an item reaches the posi-
tion where it should be in the sorted list, and this location
is still empty, it is stored there. On the other hand, if the
location is already occupied by a smaller item, the two will
be swapped, with the smaller item traveling further in the
pipeline. This means that instead of shifting the whole list
right for insertions (as one would do in software), the swap-
ping is done in the pipeline. This design decision is impor-
tant because it allows for a continuous flow of items without
the need to stall the input while the list is being shifted.
A consequence of the pipelined design is that the number of
logical elements needed for implementing this block are a lin-
ear function of the length of the list. In our experiments, we
synthesized the circuit with a list size of 64, but larger sizes
are also possible. They are not necessarily needed, however,
because the role of this block is not to sort the entire data,
but to find the set of K highest-ranking values.

5.2.2 Composite Blocks
Based on the previous two blocks we can build more elab-

orate histograms. These composite blocks need two scans of
the binned data in memory. On the first scan they prepro-
cess the data using a modified TopK block. The histogram
is created on the second scan, using a modified equi-depth
block.

Figure 14: The Compressed histogram is calculated in two
scans, using a modified TopK and an equi-depth block

Max-diff. In order to calculate the Max-diff histogram,
first the K largest differences between bins need to be deter-
mined. For this, we can use a modified TopK block which
instead of looking at the size of the bins looks at the dif-
ference between two consecutive bins. This is achieved by
putting a subtract logic at the entry to said block that will
replace the count of a bin with the difference between con-
secutive bins. When the first scan has finished, the list of
top K differences is kept in the TopK circuitry. As Figure 13
shows, on the second scan bins are compared to the elements
of this list, and flagged when found (that is, the bins that
created the K biggest differences are flagged). A modified
equi-depth block will use the flag as a bucket-creation condi-
tion instead of comparing the current count to some thresh-
old value. The output of this block has the same format as
the original equi-depth histogram block’s output.

Compressed Histograms. The Compressed histogram is
even easier to obtain from the two building blocks we have
(Figure 14). On the first scan the top K frequent items are
determined and kept in the list of the modified TopK block.
They are output at the end of the scan, just as the regular
top frequency list would be but their values are not removed
from the registers. On the second scan, the modified TopK
block filters out all bins that appear in the frequent list (flag-
ging them as invalid data), and forwards the rest of the data
to an instance of the equi-depth block that then constructs
an equi-depth histogram of the less frequent values.

6. EVALUATION
Our evaluation setup is a Maxeler workstation2, which

has a quad-core Intel I7 2600S processor and 32 GB of main
memory, running CentOS 6. The FPGA is a Xilinx Virtex-6
SXT475 chip on a PCIe card (8 lanes, Gen1). As shown in
Figure 15, the FPGA has its own dedicated 24 GBs of DDR3
memory, accessible directly from the chip. Our custom cir-
cuit was clocked at 150 MHz for all experiments. While the
platform at our disposal did not allow for using the FPGA
directly as an “implicit accelerator”, as we show in this sec-
tion the performance of the statistical circuit can be accu-

2http://www.maxeler.com/products/desktop/

Figure 15: The Maxeler Box we used for our experimental
evaluation has a Xilinx FPGA attached via PCIe

1573

http://www.maxeler.com/products/desktop/

Binner performance (values/second) Equiv. rate for 1 column table Equiv. rate for lineitem
Cache never hit (Worst) 20Million/s 80MB/s 2.9GB/s
Cache always hit (Best) 50Million/s 200MB/s 7.4GB/s

Pipeline (Ideal) 75Million/s 300MB/s 11.1GB/s
Table 1: Measured and ideal performance of the Binner module

 0

 100

 200

 300

 400

 500

 30 60 150 300 450

H
is

to
gr

am
 c

re
at

io
n

tim
e

(s
)

Millions of rows in the table

FPGA
DBx 100%

DBx 5%
DBy 100%

DBy 5%

Figure 16: Effect of sampling on database histogram calcu-
lation

rately evaluated nonetheless. We compare the performance
of the FPGA with two common commercial databases, re-
ferred to as DBx and DBy in the rest of this evaluation
section.

6.1 Memory Access Rate
As explained in Section 5.1.2, the performance of the Bin-

ner module is determined by the off-chip memory: The max-
imum rate at which the Binner can handle input items is
bound by the number of operations the memory controller
can perform per second. We measured this number on our
development system, and observed that it is relatively low
because in the Maxeler workstation the memory attached to
the FPGA is optimized for high bandwidth scans, not ran-
dom access on small data chunks. Even so, as Table 1 sum-
marizes, in the worst case, the memory can sustain 20 mil-
lion updates to the bins per second, which translates to pro-
cessing a one column table at 80 MB/s3. When processing
a column of a table that has wider rows, such as lineitem
from TPC-H , the rate that can be sustained for the table
as a whole is significantly higher.

In case the data is heavily skewed, and therefore similar
items often follow each other in bursts, it is possible to per-
form a higher number of updates per second. This is because
in our implementation we do not issue read commands for
items that are already in the cache. Consequently, the av-
erage number of memory accesses per bin update decreases,
which in turn increases throughput. Additionally, when ac-
cessing rows in a less random manner, the memory also ex-
hibits a higher access speed. Since the performance increase
depends on the data distribution, we decided to conduct all
our experiments with data that does not take advantage of

3This number is derived from the fact that the memory con-
troller can handle 40 million read or write accesses per sec-
ond in the worst case, and each bin update requires a read
and a write operation. Assuming the input to be 32 bit
numbers the 1 column throughput is 4B*20M/s=80MB/s

 0

 100

 200

 300

 400

 500

 30 60 150 300 450

H
is

to
gr

am
 c

re
at

io
n

tim
e

(s
)

Millions of rows in the table

FPGA (1&8 columns)
DBx 8 columns
DBx 1 column

DBy 8 columns
DBy 1 column

Figure 17: Reducing the number of columns in the table
makes analysis faster

the cache. In addition to the two measured values in Ta-
ble 1, we also show the maximum throughput the statistical
pipeline can achieve with sufficiently fast memory.

6.2 Histograms Building Speed
The goal of the following experiments is to show that our

prototype accelerator can provide the same histograms as
DBx and DBy at a fraction of the cost. The type of the
histogram calculated on all three systems was equi-depth,
left at the default bucket size for the databases, and set to
256 in the case of the FPGA. The tables we used for the
experiments were cached in memory, and are derived from
the lineitem table of the TPC-H benchmark. For the first
measurements we created an eight column version of lineitem
using the first eight numeric columns of the original table
– this was achieved by truncating the output of the data
generator. We used this setup to increase the number of
rows that fit in memory.

Baseline. As a first experiment we measure a baseline on
how much time it takes for the two commercial databases
to calculate histograms on the eight column table created
with TPC-H scale factors 5, 10, 25, 50 and 75. On the CPU
we report the times to calculate the histogram on l quantity
as the execution time of the stored procedures which per-
form the statistical analysis; and for the FPGA we defined
as runtime the time it takes from sending the first byte of
the data through PCIe, until all result bytes from the FPGA
were received. There is no delay inside the FPGA between
receiving the first byte of the data and the start of the bin-
ning pipeline. Also, the FPGA is always processing the full
input data, sampling is only done in case of the DBMSs.

Figure 16 shows that the FPGA performs much better
than either of the databases, even when they use sampling.
An interesting artifact of the graph is that the runtime of
DBy does not decrease proportionally with the decrease in
sampling rate – this means that for very large tables DBy

1574

 0

 100

 200

 300

 400

 500

 30 60 150 300 450

H
is

to
gr

am
 c

re
at

io
n

tim
e

(s
)

Millions of rows in the table

FPGA
Index1 100%

Index1 5%
Index8 100%

Index8 5%

Figure 18: Calculating histograms on indexed tables in DBx

 0

 50

 100

 150

 200

 250

l_quantity

l_orderkey

l_extendedprice

H
is

to
g
ra

m
 c

re
a
ti
o
n
 t
im

e
 (

s
)

Column to analyze

FPGA

DBx 100%

DBx 20%

DBx 10%

DBx 5%

Figure 19: Effect of cardinality on histogram creation

might not be able to provide any sophisticated statistics if
the time limit for acquiring them is too small.

As a follow up experiment, we reduced the lineitem table
to a one column version, and repeated the previous measure-
ments without sampling on this table. By having only one
column, the runtimes for the databases should reflect the
true CPU time needed to analyze a single column without
other overheads. Figure 17 shows that even in this best-
case scenario for DBx and DBy performing analysis without
sampling will still take almost an order of magnitude longer
than on the FPGA.

Indexed column. The third set of experiments that we
show targets only DBx because it has the functionality of
calculating histograms on indexes, whereas DBy does not.
We created an index both on the 8 column lineitem (In-
dex8) and the 1 column variant (Index1). Figure 18 shows
how the performance of DBx improves when dealing with
indexed columns – independent of the width of the rows the
index was created on. This is most likely due to the fact
that the index is a sorted representation of the underlying
data, and hides the width of the original rows. Actually,
with 5% sampling DBx is so fast that it catches up with the
FPGA. The FPGA, however, is doing full table scans in this
time. It is also important to note that 1) the creation and
maintenance of the index introduces high costs, which are
not represented at all in this graph, and 2) the histograms

 0

 10

 20

 30

 40

 50

 60

 70

U
niform

Zipf 0.35

Zipf 0.75

Zipf 1

H
is

to
g
ra

m
 c

re
a
ti
o
n
 t
im

e
 (

s
)

Zipf skew

FPGA

DBx 100%

DBx 20%

DBx 5%

Figure 20: Effect of skew in columns on analysis time

created are not equivalent because the FPGA version is built
on the complete view of the data and the other only on a
small sample of it.

Skew and Cardinality. As further exploration of his-
togram calculation costs, we compared the times for differ-
ent columns of the lineitem table (scale factor 10), having
different cardinalities and data types. Figure 19 shows that
low-cardinality columns (like l quantity with less than 100
different values) are cheaper to analyze than very high car-
dinality columns (such as l extendedprice and l orderkey).
These results suggest that dealing with fixed-point arith-
metic instead of integers introduces further overheads in
DBx. The FPGA on the other hand is not noticeably in-
fluenced by the cardinality of the input dataset. A de-
tailed discussion on the exact cost for the histogram build-
ing phase in the FPGA is presented in Section 6.3, but for
tables with millions of rows or more, these costs are negligi-
ble.

Figure 20 shows that, as opposed to cardinality, skew has
little effect on runtimes. The table we built for this experi-
ment is populated with synthetic data (8 columns), with a
cardinality of 2048 and Zipf distribution.

Automatic choice of sampling rate. While it is true
that sampling can yield very accurate approximations of the
actual data distributions [5], it can also happen that if the
data is under-sampled important features are lost. What
is even worse is that randomly, some features do not always
show up in the histogram, which in turn leads to oscillations
in the query plan. To illustrate how even very small errors
in the histogram can lead to inadequate query plans, we
revisited the query Q1 from Section 2 using PostgreSQL. We
chose PostgreSQL for this experiment because it is open-
source and by modifying the analyzer’s source code it is
possible to force results into the histogram data structure.

We made a few changes to the query4 and introduced
small spikes at random in the data distribution of the lineitem
table (scale factor 1): for a handful of prices we increased
their occurrences to 2000 each, which is a very small skew
given that there are six million rows in the table. Post-
greSQL’s automatic sampling detects these spikes only with
roughly 50% probability each, and this leads to an oscilla-

4We introduced an ORDER BY clause in the first part and
are joining on equality; This is needed so that PostgreSQL
will consider not only Nested Loops Join in the optimizer

1575

Block Resource Usage Resource Scaling Result Latency Result Size Scans Max. Freq.
TopK 2.5% (T=64) O(T) 2∆+2T T * 8bytes 1 170MHz
Equi-depth <1% O(1) 2∆/B B * 8bytes 1 240MHz
Max-diff <3% (B=64) O(B) (2∆+2B) + 2∆/B B * 8bytes 2 170MHz
Compressed <3% (T=64) O(T) (2∆+2T) + 2∆/B (T+B) * 8bytes 2 170MHz

Table 2: Summary of properties and resource consumption on a Virtex6 FPGA of the four statistical blocks

 0

 1

 2

 3

 4

 5

 6

 7

 8

2000x5000

2000x10000

2000x15000

J
o
in

 t
im

e
 (

s
)

Join size (items x customers)

With accurate statistics (SMJ)

With inaccurate statistics (NLJ)

Figure 21: In PostgreSQL wrongly chosen query plans can
lead to significant performance differences

tion between a Nested Loops (NLJ) and a Sort Merge Join
(SMJ) based query plan every time the table is analyzed.
As Figure 21 shows, the runtimes are very different for the
same data depending on the accuracy of the histograms.
Furthermore, as the number of records participating in the
join is increased, the more significant the difference becomes.
When forced to use accurate histograms, PostgreSQL will
correctly use Sort Merge Join.

6.3 Statistics Blocks
In addition to evaluating the accelerator as a whole, we

present the different properties of the four statistical blocks
(TopK, Equi-depth, Max-diff and Compressed) that were
implemented for this paper. The most important input pa-
rameters to the Histogram module are:

• T : Number of top frequencies (exact counts) to main-
tain, and number of frequencies to remove in Com-
pressed histograms

• B : Number of buckets to create for the equi-depth,
Max-diff and the Compressed histogram

• ∆ : The number of bins in memory that have to be
read out for histogram creation

The most important properties of the four blocks are:

• Resource consumption : This property shows how much
real estate each block is occupying. We express this as
a percentage of the total resources on our FPGA.

• Resource scaling : This property shows how the block
scales in terms of logic resource usage with increased
bucket/frequency counts. This is an important metric
because it shows how large each block can be made on
a given FPGA.

• Result latency : This is the amount of time it takes
for the block to produce the first result byte from the

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35

C
re

at
io

n
tim

e
(m

s)

Number of bins in memory (millions)

Smallest table over 1Gbps EthernetTopK
Equi-depth

MaxDiff/Compressed

Figure 22: The time to process the binned representation
grows linearly with the bucket count for every block

moment the first bin is retrieved from memory. This is
expressed in number of clock cycles, which at 150 MHz
last for 6.6 ns.

• Result size : The size of data in bytes that is output as
a result of the statistical algorithm. Since each bucket
is output as a pair of 32-bit integers, each bucket needs
8 bytes.

• Scans : How many times the block needs to scan the
bins in order to finish its respective algorithm.

• Maximum frequency : The maximum frequency at
which the given block can be clocked on the chip. This
number is important, because in an FPGA design the
final clock rate has to be chosen to be lower or equal
than the minimum of all blocks.

Table 2 summarizes these properties for the four blocks
we have implemented. Apart from the Equi-depth block
all the others need logic resources relative to the number
of buckets they produce. Consequently, these should al-
ways be scaled to a number of buckets that ensures good
quality histograms but still fits on the FPGA. In terms of
result latency, again the Equi-depth block will return the
first bucket as soon as the threshold has been reached, but
the other blocks take longer to create their results. The
TopK block needs to read all bins before the top-list can
be finalized. Similarly, both the Max-diff and Compressed
histograms will start outputting buckets only once the data
has been read in its entirety. With respect to pass-through
latency, each block adds a constant number of cycles, which
are necessary for copying the data into the internal logic. In
our implementation this latency is 2 cycles per block. This
means that with all four blocks on the chip, the last one
will receive the contents of the first bin only 40ns (6*6.66ns)
later than the first one.

To quantify the cost of creating histograms from the binned
representation in our implementation we measured the time
it takes for each block from the first retrieved bin, to the last
result bucket output. As can be seen in Figure 22, this time

1576

increases linearly for each type of block, and the Max-diff
and Compressed take as long as the TopK and equi-depth
combined. This is not surprising, because these are a com-
bination of the latter two. The reason for the TopK block
to take longer than the equi-depth is that depending on the
contents of the top-list, it can take two cycles to process
a single input item, while the equi-depth always takes one
cycle per input. The times in the graph are not additive,
that is, if more blocks are chained together, their comple-
tion times will still be as shown in the graph. As a point
of reference, Figure 22 also includes the minimum time it
would take to stream a 1 column table over 1 Gbps Ether-
net. Since we are targeting big data use-cases, it is very
likely that the total number of rows in a table is orders
of magnitudes higher than the cardinality of the column –
making the cost of these histograms negligible.

Histogram variety. While we showed in the previous sub-
sections that the FPGA can calculate histograms faster than
software databases, we did not compare their feature set yet.
In the following, we compare the types of statistics that
four popular databases use with what the FPGA can offer.
The Oracle database engine creates either equi-depth his-
tograms (end-balanced or simple) or TopK representation
on the data [26]. IBM DB2 and PostgreSQL gather both
simple equi-depth histograms and TopK statistic [14, 28] on
the data. Microsoft SQL Server calculates only Max-diff his-
tograms [20]. The FPGA can provide TopK and equi-depth
together with no additional cost. This means that as long
as the FPGA processes at least as much of the data as the
databases it will always provide the same, or more accurate,
histograms as the databases. However, on top of this stan-
dard set of statistics, for no added cost, the FPGA can also
create Max-diff and Compressed histograms.

7. FUTURE WORK
A next step for our prototype would be to scale it up to

be able to handle single columns arriving at 10 Gbps line
rate. Since in our architecture the memory is the immediate
bottleneck, the first step would be to move the prototype to
an FPGA board with faster memory than our current devel-
opment board. Then the Parser and Binner modules would
become the next bottleneck. However, these modules could
easily be replicated to provide the aggregated throughput of
10 Gbps (Figure 23) – in fact, achieving higher data rates
by replication is a common practice in FPGA development.
The input items copied from the pass-through line can be
distributed in a round-robin fashion to the different copies
of the Binner module, which will calculate the partial counts
in their memories.

The histogram module would not need to be modified even
if the circuit is targeting higher input rates because it is
completely decoupled from the input stream through the

Figure 23: Higher data rates can be achieved by scaling up
on future platforms

memory. If there are multiple memory chips used in the
system, the partial counts can be aggregated in constant
time before they are fed into the statistical blocks.

8. CONCLUSION
In the era of big data, data processing happens in in-

creasingly distributed and heterogeneous environments. As
a result, the choice of the best processing platform for a par-
ticular data processing task is crucial. As the state of the art
in database design shows, statistics are successfully used to
derive the right execution plans, but unfortunately obtain-
ing these statistics is becoming increasingly difficult. In this
paper, we propose an approach to change the traditional way
of calculating histograms in batches, to an always-on statis-
tical accelerator. This accelerator, which sits in the data
path, acts as a bump in the wire and creates histograms for
the data that it relays.

We have implemented the proposed idea on an FPGA
to show the feasibility of moving the statistical logic into
small dedicated circuits. We show both a speedup for the
histogram calculation as well as the potential increase in
accuracy when compared to two commercial databases. We
also discuss the current platform limitations and propose
ways of removing them.

Acknowledgements
This work is funded in part by grants from Xilinx, as part
of the Enterprise Computing Center (www.ecc.ethz.ch), and
Microsoft Research, as part of the Joint Research Center
MSR-ETHZ-EPFL. The FPGA equipment used in the paper
was acquired under the Maxeler University Program.

9. REFERENCES
[1] H. Angepat, D. Chiou, et al. An FPGA-based in-line

accelerator for Memcached. IEEE Computer
Architecture Letters, 99, 2013.

[2] A. Arasu, S. Blanas, K. Eguro, R. Kaushik,
D. Kossmann, R. Ramamurthy, and R. Venkatesan.
Orthogonal security with Cipherbase. Proc. of the 6th
CIDR, Asilomar, CA, 2013.

[3] M. Bando, N. S. Artan, and H. J. Chao. Flashlook:
100Gbps hash-tuned route lookup architecture. In
High Performance Switching and Routing, 2009.
HPSR 2009. International Conference on, pages 1–8.
IEEE, 2009.

[4] J. Casper and K. Olukotun. Hardware acceleration of
database operations. In Proceedings of the 2014
ACM/SIGDA international symposium on
Field-programmable gate arrays, pages 151–160. ACM,
2014.

[5] S. Chaudhuri, R. Motwani, and V. Narasayya.
Random sampling for histogram construction: How
much is enough? In ACM SIGMOD Record,
volume 27, pages 436–447. ACM, 1998.

[6] Convey. Memcached with hybrid-core computing
white paper.
http://www.conveycomputer.com/files/6113/7998/

5068/CONV-13-047_MCD_whitepaper.pdf, 2013.

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E.
Leiserson. Introduction to Algorithms. McGraw-Hill
Higher Education, 2nd edition, 2001.

1577

http://www.conveycomputer.com/files/6113/7998/5068/CONV-13-047_MCD_whitepaper.pdf
http://www.conveycomputer.com/files/6113/7998/5068/CONV-13-047_MCD_whitepaper.pdf

[8] T. P. P. Council. TPC-H benchmark specification,
2008. http://www.tcp.org/hspec.html.

[9] C. Dennl, D. Ziener, and J. Teich. Acceleration of
SQL restrictions and aggregations through
FPGA-based dynamic partial reconfiguration. In
Field-Programmable Custom Computing Machines
(FCCM), 2013 IEEE 21st Annual International
Symposium on, pages 25–28. IEEE, 2013.

[10] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and
D. J. DeWitt. Query processing on Smart SSDs:
Opportunities and challenges. In Proc. of the 2013
ACM SIGMOD Conference on Management of Data,
pages 1221–1230, New York, NY, USA, 2013.

[11] J. J. Garnica, S. Lopez-Buedo, V. Lopez, J. Aracil,
and J. M. G. Hidalgo. A FPGA-based scalable
architecture for URL legal filtering in 100GbE
networks. In Reconfigurable Computing and FPGAs
(ReConFig), 2012 International Conference on, pages
1–6. IEEE, 2012.

[12] R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes,
P. Dube, S. Asaad, and B. Iyer. Accelerating join
operation for relational databases with FPGAs. In
Field-Programmable Custom Computing Machines
(FCCM), 2013 IEEE 21st Annual International
Symposium on, pages 17–20. IEEE, 2013.

[13] M. Heimel and V. Markl. A first step towards
GPU-assisted query optimization. In The Third
International Workshop on Accelerating Data
Management Systems using Modern Processor and
Storage Architectures, Istanbul, Turkey, 2012.

[14] IBM. DB2 Version 10.1 for Linux, UNIX, and
Windows. http://pic.dhe.ibm.com/infocenter/
db2luw/v10r1/index.jsp.

[15] IBM/Netezza. The Netezza data appliance
architecture: A platform for high performance data
warehousing and analytics, 2011. http://www.
redbooks.ibm.com/abstracts/redp4725.html.

[16] Y. Ioannidis. The history of histograms (abridged). In
Proceedings of the 29th international conference on
Very large data bases-Volume 29, pages 19–30. VLDB
Endowment, 2003.

[17] Z. Istvan, G. Alonso, M. Blott, and K. Vissers. A
flexible hash table design for 10Gbps key-value stores
on FPGAs. In Field Programmable Logic and
Applications (FPL), 2013 23rd International
Conference on, pages 1–8. IEEE, 2013.

[18] S.-W. Jun, M. Liu, K. E. Fleming, et al. Scalable
multi-access flash store for big data analytics. In
Proceedings of the 2014 ACM/SIGDA international
symposium on Field-programmable gate arrays, pages
55–64. ACM, 2014.

[19] Microsoft. SQL Server Autostat Functionality.
http://support.microsoft.com/kb/195565.

[20] Microsoft. SQL Server Documentation: Statistics.
http://technet.microsoft.com/en-us/library/

ms174384.aspx.

[21] R. Moussalli et al. Accelerating XML query matching
through custom stack generation on FPGAs. In
HiPEAC’10, Pisa, Italy, Jan. 2010.

[22] R. Mueller, J. Teubner, and G. Alonso. Data
processing on fpgas. Proceedings of the VLDB
Endowment, 2(1):910–921, 2009.

[23] R. Mueller, J. Teubner, and G. Alonso. Streams on
wires: a query compiler for fpgas. Proceedings of the
VLDB Endowment, 2(1):229–240, 2009.

[24] M. Najafi, M. Sadoghi, and H.-A. Jacobsen. Flexible
query processor on FPGAs. Proceedings of the VLDB
Endowment, 6(12):1310–1313, 2013.

[25] Oracle. Call Interface Programmer’s Guide.
http://docs.oracle.com/cd/B28359_01/appdev.

111/b28395/oci03typ.htm#g467721.

[26] Oracle. White Paper on Understanding Optimizer
Statistics, 2012.
http://www.oracle.com/technetwork/database/

focus-areas/bi-datawarehousing/

twp-optimizer-stats-concepts-110711-1354477.

pdf.

[27] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J.
Shekita. Improved histograms for selectivity
estimation of range predicates. ACM SIGMOD
Record, 25(2):294–305, 1996.

[28] PostgreSQL. 9.3 On-line Documentation: Statistics.
http://www.postgresql.org/docs/9.3/static/

view-pg-stats.html.

[29] M. Sadoghi et al. Efficient event processing through
reconfigurable hardware for algorithmic trading.
VLDB’10, Sept. 2010.

[30] M. Sadoghi, R. Javed, N. Tarafdar, H. Singh,
R. Palaniappan, and H.-A. Jacobsen. Multi-query
stream processing on fpgas. In Data Engineering
(ICDE), 2012 IEEE 28th International Conference on,
pages 1229–1232. IEEE, 2012.

[31] J. Teubner, R. Mueller, and G. Alonso. FPGA
acceleration for the frequent item problem. In Data
Engineering (ICDE), 2010 IEEE 26th International
Conference on, pages 669–680. IEEE, 2010.

[32] J. Teubner, L. Woods, and C. Nie. Skeleton automata
for fpgas: reconfiguring without reconstructing. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 229–240.
ACM, 2012.

[33] P. Vaidya et al. Symbiote: A reconfigurable logic
assisted data stream management system (rladsms).
In SIGMOD’10, Indianapolis, IN, USA, June 2010.

[34] L. Woods, J. Teubner, and G. Alonso. Complex event
detection at wire speed with FPGAs. Proceedings of
the VLDB Endowment, 3(1-2):660–669, 2010.

[35] L. Woods, J. Teubner, and G. Alonso. Less watts,
more performance: an intelligent storage engine for
data appliances. In Proceedings of the 2013
international conference on Management of data,
pages 1073–1076. ACM, 2013.

[36] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna.
Compact architecture for high-throughput regular
expression matching on FPGA. In ANCS’08, San
Jose, CA, USA, Nov. 2008.

[37] Q. Zhu, B. Dunkel, N. Soparkar, S. Chen, B. Schiefer,
and T. Lai. A piggyback method to collect statistics
for query optimization in database management
systems. In Proceedings of the 1998 conference of the
Centre for Advanced Studies on Collaborative research,
page 25. IBM Press, 1998.

1578

http://www.tcp.org/hspec.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp
http://www.redbooks.ibm.com/abstracts/redp4725.html
http://www.redbooks.ibm.com/abstracts/redp4725.html
http://support.microsoft.com/kb/195565
http://technet.microsoft.com/en-us/library/ms174384.aspx
http://technet.microsoft.com/en-us/library/ms174384.aspx
http://docs.oracle.com/cd/B28359_01/appdev.111/b28395/oci03typ.htm#g467721
http://docs.oracle.com/cd/B28359_01/appdev.111/b28395/oci03typ.htm#g467721
http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/twp-optimizer-stats-concepts-110711-1354477.pdf
http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/twp-optimizer-stats-concepts-110711-1354477.pdf
http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/twp-optimizer-stats-concepts-110711-1354477.pdf
http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/twp-optimizer-stats-concepts-110711-1354477.pdf
http://www.postgresql.org/docs/9.3/static/view-pg-stats.html
http://www.postgresql.org/docs/9.3/static/view-pg-stats.html

	Introduction
	Motivation and Related Work
	Histograms in Databases
	System Overview
	Implementation
	Binner Module
	Preprocessor
	Pipeline
	On-chip Caching

	Histogram Creation and Statistics
	Basic Blocks
	Composite Blocks

	Evaluation
	Memory Access Rate
	Histograms Building Speed
	Statistics Blocks

	Future Work
	Conclusion
	References

