A Hash Table for Line-Rate Data Processing

ZSOLT ISTVAN and GUSTAVO ALONSO, Systems Group,
Department of Computer Science, ETH Ziirich

MICHAELA BLOTT, Xilinx Labs, Ireland

KEES VISSERS, Xilinx Labs, California

FPGA-based data processing is becoming increasingly relevant in data centers, as the transformation of
existing applications into dataflow architectures can bring significant throughput and power benefits. Fur-
thermore, a tighter integration of computing and network is appealing, as it overcomes traditional bottlenecks
between CPUs and network interfaces, and dramatically reduces latency.

In this article, we present the design of a novel hash table, a fundamental building block used in many
applications, to enable data processing on FPGAs close to the network. We present a fully pipelined design
capable of sustaining consistent 10Gbps line-rate processing by deploying a concurrent mechanism to handle
hash collisions. We address additional design challenges such as support for a broad range of key sizes without
stalling the pipeline through careful matching of lookup time with packet reception time. Finally, the design
is based on a scalable architecture that can be easily parameterized to work with different memory types
operating at different access speeds and latencies.

We have tested the proposed hash table in an FPGA-based memcached appliance implementing a main-
memory key-value store in hardware. The hash table is used to index 2 million entries in 24GB of external
DDR3 DRAM while sustaining 13 million requests per second, the maximum packet rate that can be achieved
with UDP packets on a 10Gbps link for this application.

Categories and Subject Descriptors: B.6.1 [Hardware]: Logic Design—Parallel circuits; E.2.3 [Data]: Data
Structures—Hash-table representation

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: FPGAs, data structures, hash functions, parallel architecture

ACM Reference Format:

Zsolt Istvan, Gustavo Alonso, Michaela Blott, and Kees Vissers. 2015. A hash table for line-rate data pro-

cessing. ACM Trans. Reconfig. Technol. Syst. 8, 2, Article 13 (March 2015), 15 pages.
DOI: http://dx.doi.org/10.1145/2629582

1. INTRODUCTION

Field-programmable gate array (FPGA)-based data processing is becoming increas-
ingly relevant in data centers thanks to the inherent parallelism in these devices that
allows for creating application-specific dataflow implementations. These implementa-
tions can bring significant performance benefits in the form of throughput and latency,
as well as power reduction. Examples of such FPGA applications range from stream-
ing query execution [Mueller et al. 2009] and pattern matching [Woods et al. 2010] to

This work was funded in part by the Enterprise Computing Center (ECC: http://www.ecc.ethz.ch).

Authors’ addresses: Z. Istvan and G. Alonso, Systems Group, Department of Computer Science, ETH Zurich,
Zurich, Switzerland; emails: {zsolt.istvan, alonso}@inf.ethz.ch; M. Blott, Xilinx Labs, Citywest Business
Campus, Dublin, Ireland; email: mblott@xilinx.com; K. Vissers, Xilinx Labs, San Jose, CA 95124, United
States; email: kvissers@xilinx.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 1936-7406/2015/03-ART13 $15.00

DOI: http://dx.doi.org/10.1145/2629582

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

http://dx.doi.org/10.1145/2629582
http://dx.doi.org/10.1145/2629582

13:2 Z. Istvan et al.

database-related tasks such as compression or encryption [Arasu et al. 2013; Francisco
2011] or SQL query execution [Dennl et al. 2013]. FPGAs are also used to speed up
main-memory caching services by parsing packets and calculating hash values of keys
[Lavasani et al. 2013; Convey 2013]. In this article, we focus on a widely used data
structure relevant in this domain: hash tables. Hash tables are commonly used in soft-
ware whenever an item from a set needs to be quickly retrieved; however, at this time,
there is no large-scale line-rate FPGA implementation suitable for use in data centers.

There is a large body of prior work in the context of hash tables on FPGAs targeted at
networking use cases, such as high-speed IP filtering or flow classification (e.g., Weaver
et al. [2007] and Pus and Korenek [2009]). The key difference in data processing is that
unlike in networking use cases, the hash tables need to hold more entries (millions),
and key and value size are flexible and typically much larger as well. In this work,
we rely on the parallelism of the FPGAs to provide a scalable, high-throughput, high-
capacity hash table suitable for a wide range of data streaming applications. To achieve
this, we use parallel lookups—that is, we compare a key to multiple locations in the
hash table in parallel, and we decouple key and value storage, to achieve both very
high flexibility in data sizes and high storage efficiency.

Development on FPGAs is a slower process than on CPUs, and code reuse is there-
fore of high importance. We aimed at an implementation that could ensure line-rate
processing independent of the network interface, such as Ethernet or Infiniband, and
in anticipation of future use cases we also wanted to support keys as large as hundreds
of bytes and values ranging up to several megabytes without having to change the
architecture. Finally, we aimed to provide an implementation independent of mem-
ory latency and access bandwidth to achieve a certain degree of portability between
platforms and storage types (SRAM, DRAM, and flash).

The ideas presented in this article extend and build upon our previous work [Istvan
et al. 2013]. The results have been evaluated as part of a larger project: a memcached
appliance running on an FPGA [Blott et al. 2013]. Memcached is a main-memory
cache for Web applications that exposes over the network an interface to store key-
value pairs, similar to hash tables. By integrating our hash table into the dataflow
architecture of this appliance, we make it possible to (1) scale the key-value store to
millions of entries in DRAM and (2) provide enough throughput for a real-life 10Gbps
data center application.

The rest of the article is organized as follows. Section 2 discusses related work in
hash tables on FPGAs. Section 3 describes the two hash functions used in our work.
A high-level overview of the implementation is given in Section 4, whereas Section 5
describes our parallel dataflow architecture in detail. Memcached, which is our main
use case, and the evaluation results are presented in Section 6, and conclusions can be
found in Section 7.

2. RELATED WORK

Hash tables provide an effective solution to the common search problem of retrieving
a value that is associated with a key. The main challenge is in handling the case when
multiple keys map to the same hash index (hash collision) while maintaining consistent
throughput levels. In this section, we review popular ways of implementing hash tables
on FPGAs. In general terms, we differentiate between the case in which the input keys
are known beforehand and the hash collisions can be completely avoided, and the more
general case in which little is known about the contents of the keys and the handling
of hash collisions represents a major challenge.

One well-known approach for cases where all input keys are known beforehand
is called perfect hashing. This method relies in essence on the idea of creating or
customizing the hash function itself such that collisions can be completely avoided for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

A Hash Table for Line-Rate Data Processing 13:3

a previously known set of input keys. Using a perfect hash function to locate elements
in a table has the advantage of guaranteed constant time read and write operations.
However, finding such a function for a set of keys can be computationally complex on
an FPGA (more so if the keys are long strings) and has to be repeated every time a key
changes. Therefore, this scheme is particularly attractive in cases where the key set is
near static, such as in the case of detecting patterns in an intrusion detection system
(e.g., Sourdis et al. [2005]).

For many other use cases, the key set is unknown and changes dynamically over time.
For these, a predefined hash function is used, and collisions will inevitably occur. A hash
table with an open addressing scheme solves these collisions in the following way: when
an item needs to be inserted into the table, its hash location is examined, and if it is
already occupied by another item, the next locations are sequentially examined until
an empty slot is found. The sequence in which the locations are scanned is determined
by the specific type of open addressing scheme used (e.g., linear, quadratic). The main
drawback of solving hash collisions this way is that both read and write operations take
variable time to finish. Additionally, after a delete, housekeeping may be necessary to
reorganize the table to fill in the “gaps.”

Cuckoo hashing [Pagh and Rodler 2004; Kirsch et al. 2009] is an open addressing
variant that uses two hash functions instead of just one. In this table, an item has two
possible locations (the index provided by two different hash functions), and if the item
resides within the table, it is guaranteed to be in either of the two. When performing
a read access, only these two locations need to be examined. In case of a write, if both
locations are taken by other items, a greedy algorithm is used to reorganize the table
until it meets the preceding invariant for all items. In a cuckoo hash table, reads are
always answered in constant time. However, writes pay the cost of collisions, resulting
in unpredictable response times.

An alternative to the open addressing approach, often used in software implemen-
tations, is to store items that hash to the same address in a bucket belonging to that
address. Inside the bucket, items are organized as a linked list of variable length. Al-
though the disadvantage of variable-time reads and writes applies to this technique
as well, its popularity in software can be explained by the fact that its performance
degrades gracefully with increasing load factors. In other words, the table will function
even if the number of keys is more than what was anticipated at the time of memory
allocation. The price is that it will require more than one memory access per operation.
When using a good hash function, the number of items in the buckets will be propor-
tional to the load factor and the access time will be mostly constant. Deviations from the
median access time can be potentially large, which constitutes a challenge for pipelined
hardware implementations. Often, the bucket size is limited to restrict the potential
penalty of the sequential search in the linked list inside the bucket [Chalamalasetti
et al. 2013].

FPGA solutions can also leverage multiple off-chip memories to provide constant
performance in the hash table even with collisions [Bando et al. 2009]. By comparing
the input key in parallel to multiple entries in a hash table bucket, the decision-making
process can be accelerated. Instead of parallelizing inside a bucket, it is also possible to
parallelize at a higher granularity. This could be done by dividing the hash table into
multiple physical parts, each of them addressed by a different hash function: accesses
and comparisons could be carried out in parallel. The obvious drawback of any kind
of parallel lookup is that it needs substantially larger memory bandwidth than the
sequential lookup schemes—the trade-off is constant access time for higher memory
bandwidth [Broder and Karlin 1990; Broder and Mitzenmacher 2001]. Here we adopt
a similar approach. Instead of using multiple memory interfaces, we use only one wide
memory interface; furthermore, a key difference in our work is that we support keys

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

134 Z. Istvan et al.

of variable size. For this, we stripe the data structure over multiple entries. Thereby,
the read access time is directly proportional to the size of the key, and with that the
time to process a packet. In other words, this allows us to process keys at line rate
even though they have variable access times (this is explained further in Section 5).
In summary, unlike prior art, this scheme allows for parallel reads to multiple entries
while handling flexible key sizes, trading off storage efficiency for flexibility.

Sometimes the previously mentioned techniques are combined with an overflow
buffer that holds all items that cannot be stored because their respective buckets
are full. Typically, these are realized with small content-addressable memories (CAMs)
[Bando et al. 2009]. To combine this idea with cuckoo hashing, [Kirsch et al. 2009]
modify the cuckoo hash table so that it only tries moving a single item when an insert
fails, and upon failure stores the item in an overflow buffer. This works well for use
cases with good hash functions and small table sizes, where the overflow buffer re-
mains small and fits inside a CAM. Extending this idea to large hash tables (millions
of entries) is unfortunately not feasible because CAMs are restricted in their maximum
size. Furthermore, CAMs are expensive when used in conjunction with flexible key and
value sizes.

For the chosen application domain, we did not see the need for such an overflow
buffer, as it is not necessary to resolve hash collisions above a certain threshold. For
instance, in case of main-memory caches, where no guarantee is offered in the first
place on whether the data is to be found in memory, solving a collision for an insert
operation at the expense of serving several reads in the meantime could significantly
impact performance.

3. HASH FUNCTIONS

At the heart of every hash table is a hash function that influences the behavior of
the data structure: if the hash function is poorly chosen, collisions will happen much
more often than expected, creating significant access or update time penalties. For this
reason, we considered multiple hash functions, from which we present two. One of these
functions is relatively complex but provides an all-round reliable quality, whereas the
other one trades off hashing quality for a more modest logic footprint. In this section, we
discuss the two functions and their suitability for our target workloads. In the following
section, we explain how the functions are combined with the rest of the hash table.
The Lookup3 hash function [Jenkins 2006] is a popular choice for open-source soft-
ware projects because it is proven to hash well a broad range of key types with a reduced
chance of collisions. This is due to a property called the Avalanche effect, which results
in different hash values for keys that differ even in single bits only. This hash func-
tion processes variable-size keys iteratively in 96-bit chunks. Each chunk is split into
three 32-bit numbers that are added to a set of three state variables. Before the next
chunk is processed, these state variables are mixed using addition, subtraction, and
XOR operations. Due to the feedback loop nature of the algorithm, the hash function
cannot be easily pipelined: in our implementation, the mixing step is performed in
six clock cycles. As a consequence, the hash function can consume a new 96-bit input
every six cycles; however, in Section 4, we show how the overall hashing throughput
can be increased by means of replication. Given the complexity of the algorithm, it is
not surprising that it requires a significant number of logic gates in exchange for its
high-quality output. Table I summarizes the resource requirements of this component.
We have also implemented a second hash function, which we call the multiplicative
hash function; this is an adaptation of the multiplication-based function in Kernighan
et al. [1988]. Even though this second implementation is not guaranteed to work
well on arbitrary input data, it produces good hash values on average for long string
inputs, such as one would encounter with database query caching. It is computationally

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

A Hash Table for Line-Rate Data Processing 13:5

Table I. Resource Consumption of the Two Implemented Hash Functions

Name Registers | LUTs | Slices | DSP48s | Hash Performance

Lookup3 352 1,253 369 0 96 bits/6 cycles

Multiplicative 104 79 51 2 64 bits/8 cycles

]
o 100 T T T T T o 25 T T T T T T T
> 90 F ldeal ——— -t 2 F Lookup3 ——]
£ 80 F 16slots —— i - 20 F Multiplicative ———— i =
@ 70 F 8slots =—— E 9 F CRC ——]
] gg e 4slots —— 3 s 15| preg -
= = lslot 3 5 E
= 40 Eor s e E ° 10F
= 30 : ’ o £
S 20 Bt E = 5 Fi
T 10E 7 UV FYPISFFFTS TOTTES Somees E] E
< 0 N N S I AN R N | o 0] l I i L1 L
0 10 20 30 40 50 60 70 80 90 100 & 0 10 20 30 40 50 60 70 80 90 100

Attempted fill percentage Attempted fill percentage
(a) Effect of bucket size (b) Browser cookies

i 2
5 25 T T T T T T)G_J 25 T T T T T T T
2 ; Lookup3 —— 2 F Lookup3 —— 3
% 20 F Multiplicative ——— % 20 - Multiplicative ———— &t E
RERS 5 15
5 o) 5
o 10 F) F
I g 5i
=B T R g SF
(V] E (V] E
o 0 I I 1 1 v 0 L
& 0 10 20 30 40 50 60 70 80 90 100 & 0 10 20 30 40 50 60 70 80 90 100

Attempted fill percentage Attempted fill percentage

(c) Usernames (d) SQL queries

Fig. 1. Percentage of failed inserts with different hash functions.

much less complex and therefore requires less logic resources. The key differentiator
to Lookup3 is in the mixing step, which relies only on multiplication and addition. The
implementation works with 16-bit-wide input words. To calculate the hash values, it
adds each input word to the hash and multiplies the result with a “magic number.”!
As Table I shows, the multiplicative hash function has a much smaller logic footprint
than the Lookup3, and it can also take advantage of DSPs. For projects in which chip
real estate is not a limiting factor, the better hash function should be used to ensure
the best possible behavior regardless of the input key distribution; however, if the re-
source consumption has to be minimized, the multiplicative function could provide an
effective alternative.

As a first evaluation of the Lookup3 function, we looked at the interaction between
bucket size and number of hash collisions. In Figure 1(a), we hashed a set of random
keys with the Lookup3 function and tried to insert them into hash tables with different
bucket size limits while keeping the total table capacity constant. We found that by
increasing the bucket size limit, the hash table can be filled to a high extent before
encountering too many lost items. Virtually no collisions occur when fill levels remain
below 50%. Then we observed the effect of different key distributions on the number of
collisions. For this, we derived three sets of keys based on the most common memcached
use cases described in [Atikoglu et al. 2012] (Figure 1(b) through (d). These are user

ITraditionally a large prime number.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

13:6 Z. Istvan et al.

Hash Table i i Value Store
Hash Value ||
Addr. Addr.
Key B Addr. B Value A
Hash }
function Key A Addr. A Value B
Key C Addr. C Value C

Fig. 2. Hash table and value store.

names generated from a dictionary of common first and last names, MD5 hashes of
SQL-query strings, and a concatenation of four numeric IDs, respectively. To measure
the number of collisions for the different keys, we fixed the bucket size at eight items
and the table capacity at 1 million. In Figure 1(b) through (d), we compare the Lookup3
and the multiplicative function, and with a simple cyclic redundancy check (CRC)
algorithm for reference. A simple CRC module might be tempting for use on FPGAs
because of its very high throughput and minimal resource requirements, but it is
prone to producing collisions, as can be seen in the case of user names and browser
cookies. Lookup3 performs well overall, as the number of hash collisions is very small.
Surprisingly, for these three synthetic workloads, the multiplicative hash function
behaved almost indistinguishably from Lookup3; however, with real-world data, we
expect it to be less robust. When compared with the CRC results, both hash functions
are well worth their higher cost in real estate within the FPGA.

4. IMPLEMENTATION AT A GLANCE

Our hash table supports the three basic operations of lookup tables: get, insert, and
delete. The get operation retrieves the value associated with the input key, if present in
the hash table. The insert operation inserts a key-value pair into the hash table if there
is enough space and the key is not already in the table. If the key is already present
in the table, then it simply replaces its associated value. Finally, the delete operation
removes a key-value pair from the hash table and marks its location empty.

To maximize the flexibility in data storage, we choose a decoupled design (Figure 2)
for the hash table, which means that the keys and values are stored in separate memory
areas. The benefit of this separation is that different memory management techniques
can be used for keys and values, which might be orders of magnitude larger than the
keys. The cost of decoupling is additional latency and circuit complexity, but as we
show in Section 6, the final footprint of the hash table is small enough that it makes
this trade-off worthwhile. For use cases where minimizing latency is the final goal, the
hash table can be used with fixed-size values (after all, the value address pointer is
a value itself). In the following, when we refer to the hash table, we speak about the
part that stores the keys and the fixed-size pointers to the value store. The logic to
implementing the value store, which writes to and reads from the addresses provided
by the hash table, is described in more detail in Blott et al. [2013].

As illustrated in Figure 3, data enters and leaves the hash table’s pipeline through
flow control-enabled streaming interfaces based on the AXI-Streaming standard.? Keys
and values are transmitted over these interfaces in parallel in 64-bit data buses. The
metainformation associated with each request, such as operation code, key, and value

2Specification at http:/www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_
guide.pdf.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

http://www.xilinx.com/support/documentation/ipdocumentation/ug761axireferenceguide.pdf
http://www.xilinx.com/support/documentation/ipdocumentation/ug761axireferenceguide.pdf

A Hash Table for Line-Rate Data Processing 137

Packet buffer
Value addresses

Pre- Post-
i Hash 1 i . :
- processing = s > Cone =» FRead ~» Compare =» Expire =% Write =3 processing -

: function Control
(split) (merge)

| |

Memory controller & arbiter J

Fig. 3. Hash table pipeline structure.

length, are conveyed over a third parallel channel. The actual hash table logic sits
between the preprocessor and the postprocessor. The preprocessor extracts the key
and relevant metadata from the stream and stores the rest of the packet in a packet
buffer, and the postprocessor merges the results from the hash table back into the
packet. First, the hash function calculates the address of the key in the hash table.
The concurrency control unit then ensures that there are no read-after-write hazards
in the pipeline by delaying conflicting keys—this is an artifact of handling multiple
requests concurrently. The read unit issues the read commands to the memory, and the
comparator compares the input key with the data coming from memory. The optional
expiration unit invalidates expired keys based on an internal counter that keeps time
in seconds. Finally, the write unit is responsible for updating the hash table for all
writing operations, such as inserts and deletes. When done, the write unit outputs the
location of the value in memory and its length for successful operations or, in case the
operation does not succeed, the corresponding error code.

The compare-expire-write logic is designed to be able to match the available memory
bandwidth and interface width on different types of memories. This is achieved by
parameterization: memory lines are split into a parameterizable number of parts,
which are then handled in parallel, and the design is further parameterized to support
different maximum key sizes. The data structures in the concurrency control unit can
also be adjusted to the memory latency. With that, we achieve independence of memory
interface and type, thereby creating some degree of portability.

To achieve better memory usage efficiency, addresses are dynamically allocated for
the value store in different block sizes. In our implementation, the external value store
management logic communicates with the write unit through a simple queuing inter-
face that provides free addresses for different block sizes in parallel. Deleted addresses
are returned in a similar fashion to the external logic. Depending on the operation,
the write unit fetches or pushes the value store addresses from their respective queues
and updates the keys’ data in the hash table accordingly. By making the address gen-
eration task external to the main pipeline logic, we aim to provide more portability to
our implementation: on every platform, a suitable address generation scheme can be
chosen.

Since neither of the two hash functions presented can process incoming data at
10Gbps, we replicate these functions and deploy in parallel either (1) eight instances
of the Multiplicative hash function or (2) eight instances of the Lookup3 hash function
(even if the latter function has a higher overall throughput than the multiplicative
function, we still needed to deploy eight copies to account for quantization effects).
Work is distributed and collected in a round-robin manner as illustrated in Figure 4.

5. PARALLEL HASH TABLE

In the hash table, we handle collisions with a variant of the chaining method explained
in Section 2. A list of constant length is preallocated at each hash table address, and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

13:8 Z. |Istvan et al.
§ Couﬂtgr CoTler E
Ol Oyle—TS
H U 2
£ [# | Comparison Key | . x
E Buffer x 2 . P . 2y Parallel ltems
7 \ 3 ¥ v -
| .ll SCEE E Hash Address i { | | [Header |
H Hash Item -| Key 12
I i
i [_Keyan
.II Hash #2 N
Key data Hash value

+—>

— Hash Address (+1 < f Header |
b4 f |

32 —_——i
Hash #3 : Br |
[Keyas

| Key 33 1

)

\ .’"

\ AT v
Memary Lines

Fig. 4. Parallel hash unit. Fig. 5. Hash table layout in memory.

Xnwiag
Mux

for every incoming key the entire list? is retrieved from the table and compared to the
respective key in parallel. This design is essentially a trade-off between probability
of collisions and memory bandwidth. With increasing bucket size, the probability of
collisions can be reduced, but at the same time, the necessary memory bandwidth
grows and at some point will act as an upper bound to the number of parallel items.

If every hash table location would correspond to only one memory line (which is the
equivalent of one memory access burst), then the maximum key size would be limited
by the width of the memory interface. To support flexible key sizes, we stripe keys over
multiple memory lines. Thereby, the retrieval and comparison of longer keys takes
more memory accesses and with that a longer time. To ensure line-rate operation, we
match the read access bandwidth with the incoming packet bandwidth. We guarantee
that the time it takes to retrieve keys from memory is smaller than the amount of time
it takes to transfer their corresponding packets over the network. This layout is shown
in Figure 5. A bucket is spread “horizontally” over a memory line, whereby each hash
item can span multiple lines “vertically.” A hash item is composed of (1) a fixed size
header, which contains the length of the key, its expiration time, and the pointer to the
value store with the value length, and (2) the key itself.

Although this method of striping the keys over a number of lines provides flexibility,
it also leads to reduced storage efficiency for small keys. However, since we want to use
DRAM for the hash table, we believe that the density requirements are less critical.
On our development platform with 24GB of main memory, for instance, with less than
400MB we can support 2 million entries and 23.6GB of value storage.

If a key is not found within a bucket, we declare it a miss and no further address lines
are accessed. We believe that this behavior is acceptable for our target applications,
where the key-value store acts as a cache and cache misses are dealt with on a system
level. This way, we can guarantee constant access time for a given key size to the hash
table regardless of its fill rate or contents, whereby we maximize the probability of a
hit in the table by using a large bucket size—size 8 to be specific. For other applications
and smaller table sizes, an overflow CAM could be inserted as discussed in Section 2.
In Section 3, we show that with a good choice of hash function, and by utilizing the
hash table to some fixed percentage of its capacity, the number of lost items can be kept
at a minimum.

3For the rest of the article, we will refer interchangeably to these fixed size lists as buckets.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

A Hash Table for Line-Rate Data Processing 13:9

Value
addresses
Compare Expire Write Key, value length,
s | I value store index
ey Comparator 0 I { Write Unit 0 I——P
] [- -
Comparator 7 f | Write Unit 7
A T
Memory line Memory line
(8 stripes) (8 stripes)

Fig. 6. Parallel operation of compare, expire, and write units.

5.1. Flexible Handling of Keys and Memory

Implementing a hash table that offers flexibility both in the number of parallel items
and in the size of the keys poses several challenges. The compare-expire-write stages
of the pipeline need to be able to handle keys arriving over multiple clock cycles. These
keys have to be matched in parallel to multiple keys that reside in a number of memory
lines. On our platform, a memory line is 384 bytes in total, which corresponds to a burst
length of 8 on the 384-bit-wide memory interface. As illustrated in Figure 6, the compare
and expire units are split into parallel components to support the processing of multiple
hash items in parallel. The input key is then broadcast to all comparators that merge
the compare and expire logic. The memory line is equally divided into the various hash
items, whereby each one is routed to a different comparator. We refer to the part of a
memory line that belongs to one hash item as a stripe. This way, the copies of the key
can be compared concurrently to the stripes of the memory. Each comparator produces
three result bits representing whether the stripe matches the input key, whether the
key it holds has expired, or whether it is free. These result bits are forwarded to the
write unit.

Similarly to compare and expire, the write unit is split into stripe writers. For read
operations, the stripe writer does not modify the memory and outputs only the header of
the key that contains the value address and value length in bytes. This is then merged
back into the original packet. For write operations, the first stripe writer with a free
slot fetches a value store pointer from one of the address queues and then writes the
key and its header to the actual hash table residing in memory. For delete operations,
the pointer to the value is pushed into the deleted address queue, and the hash table
entry is erased by validating the corresponding flag in the hash table.

A concurrency control unit is required to protect against read-after-write hazards in
the pipeline, as a write to a specific memory address may not complete before a read
to the same address has been issued. This unit effectively blocks keys from entering
the read unit while a writing operation on the corresponding hash address is still in
progress. As such, the concurrency control unit is located between the hash and read
units to handle these conflicts. For the implementation of this unit, we use a queue-
like structure as shown in Figure 7. Write and delete operations push their addresses
into this data structure when entering the read phase and pop their addresses upon
leaving the write phase. For each new incoming read operation, the latest hash address
is compared to all hash addresses that reside within this queue structure to eliminate
potential hazards. The pipeline before the concurrency control unit is temporarily
stalled in case of a match. The number of keys that can concurrently reside within
the pipeline’s critical section depends on the latency of the memory. We have therefore

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

13:10 Z. Istvan et al.

Concurrency Control

Notin CAM NOT |
= ‘ In CAM?
=
Is write? 7_}
— f—
< a @ [Write
> £ 2 =l m operation
=B = " finished
= & & e
@) =
= T T
Fig. 7. Concurrency control unit.
ﬁ
Address
manager
code
DRAM

Hash Table (Write)

PCle | omg)l UMediurrLU Largeﬂ DeleteU RESN

CPU ' FPGA

Fig. 8. The queues holding block addresses stretch from the CPU to the FPGA.

parameterized this component such that it can be easily adjusted to match different
access latencies of different memory types on different platforms. On our platform,
for instance, 64 entries can accommodate for the worst case in memory subsystem
latency. In real-world workloads, most of these would be read operations, making read-
after-write conflicts rare. Furthermore, the pipeline is overprovisioned and a buffer
is introduced to minimize the effect of temporarily blocking the entrance to the next
pipeline stage. In Section 6.1, we show that already for a minimal working set of 500
out of 1 million entries with a read-biased access pattern, the effects of the related
stalls are not observable.

5.2. Memory Management

To maximize the applicability of the hash table and support use cases with a wide range
of value sizes, we decoupled the value store from the hash table, whereby the hash table
returns pointers into the value store rather than the actual values themselves. For
this reason, we need memory management logic that allocates memory dynamically
in predefined block sizes (similar to the “slab memory management” technique used
in software applications such as memcached [Memcached 2013]), which can easily be
accessed by the hash table when new entries have to be inserted or old ones removed. In
our implementation, the task of generating and storing value store pointers is carried
out by a CPU communicating with the FPGA using PCle. Figure 8 shows how this
system looks, with three queues (for small-, medium-, and large-size memory blocks)
fed from the CPU, and with a fourth queue that returns the deleted addresses to the
CPU. These addresses are 32-bit numbers, with the most significant 2 bits encoding
their size type. As a result, the system can potentially store as much as 23° key-value
pairs. Relying on PCle for communication between the hash table and the memory
management logic is not a limiting factor, because in our platform, the PCle connection

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

A Hash Table for Line-Rate Data Processing 13:11

can handle 2GB/s bidirectional traffic, which translates to a throughput of 500 million
addresses per second.

The most important advantage of including the CPU in the memory management
task is that it enables experimenting with dynamic allocation schemes: the full list
of addresses for each block size need not be generated up front but instead can be
created in a demand-driven way. One caveat of this solution, though, is that the queues
extending from the CPU to the FPGA have to be relatively large (tens of thousands
of entries) to make sure that insert operations can be performed even if the CPU
temporarily becomes unavailable to move addresses between the queues. The code
that we have implemented to run on the CPU is relatively simple. It relies on four
threads, with each one responsible for a queue. These threads are of two types: those
pushing the free addresses to the FPGA and those transferring the deleted ones to
the CPU. On startup, an initial division of the address space is performed and the
three queues are created with the addresses. The deleted addresses are distributed
into the three blocking queues by the deletion thread, and from these queues they are
further moved to the FPGA with the help of the three worker threads.

We reduce communication costs between the FPGA and the CPU with the help of
address reuse inside the hash table. The idea is that the hash table will try to reuse the
value store addresses in the memory line where the key belongs instead of fetching a
new one from the queues. When performing an insert, a new address is fetched when
(1) the key is already in the table, only if the address associated with the key points to
a block too small to store the value, or (2) when the key is not in the table, only if no
pointers from expired items in the same line can be reused. The types of value storage
blocks are determined based on the two most significant bits of the pointers.

5.3. Adding Expiration Time to ltems

In scenarios when the key-value store is used as a cache, as is the case of memcached de-
ployments, it is useful to represent the concept of data freshness to the users. Key-value
pairs can be augmented with an expiration time, expressed in seconds, after which they
are evicted from the cache, forcing the application to retrieve fresher information.

On our FPGA, items that expire are treated as if a delete command would have
been issued on them—we call this behavior delete-on-expire. A very important design
decision was to choose when to perform the deletion of expired items: on every access
to a hash table bucket or just on opportunistic occasions. We chose to perform the
delete-on-expire only together with an insert or delete operation—reads just treat the
expired items as empty slots. As a result, the description of value pointer management
in Section 5.1 can be extended to to expired items—that is, the addresses belonging
to expired keys within the accessed line are pushed into the deleted queue and the
hash table line is updated with freed entries. The reason for performing these steps
only together with inserts and deletes is twofold: (1) if reading the table could have side
effects, then the stalling behavior of the pipeline would need to be extended to read
commands as well, resulting in very high performance penalties, and (2) empty space
needs to be physically reclaimed only when a new item is inserted, and in all other
cases it is safe to ignore the expired items in logic.

6. MEMCACHED USE -CASE

Memcached [2013] is an open-source in-memory key-value store. It has a simple in-
terface that allows the storage and retrieval of arbitrary binary data based on a given
key. Most often, memcached is used to speed up Web applications by acting as a fast
write-through cache for the databases backing these applications [Fitzpatrick 2004].
This means that the result of a query is first checked in the cache, and only if not
found is the database queried for the result. When a value is changed, the cache and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

13:12 Z. Istvan et al.

(10Gbps UDP/TCP PCle® PCle® HostCPU |
Ethernet MAC DMA s ;
| S— —
Memory controller

Virtex6 FPGA

24GB DRAM

Fig. 9. Memcached deployed on a Maxeler workstation.

the database are both updated so that subsequent requests can be answered without
accessing the database again. To achieve fast response times, memcached internally
relies on a large hash table to store the key-value pairs, and it uses the Lookup3 hash
function to index the table. Per the memcached protocol specification, keys can be as
large as 250 bytes, and values are allowed to reach 1MB in size. In case the hash table
grows too large, a least recently used (LRU) policy is used to remove items and free
up space. The clients communicate with memcached over a simple protocol that builds
on variations of three basic commands: get, store, and delete, which are semantically
equivalent with the hash table operations. From these three, get operations typically
predominate in most real-world workloads [Atikoglu et al. 2012].

There is an ongoing effort on implementing memcached as an FPGA appliance [Blott
et al. 2013] with the goal of improving performance and reducing the power footprint
at the same time. Figure 9 depicts this data appliance running on an FPGA-based
network adapter. The heart of the platform is a Xilinx® Virtex6® SX475T chip, which
is connected to a 10Gbps Ethernet interface and 24GB of DDR3 SDRAM. The memory
is accessed in 384-bit words at 300MHz with a burst size of 8. The FPGA board sits in
a Maxeler workstation with an Intel i7 quad-core processor and 16GB of memory. The
FPGA and the host communicate through PCIe® gen2 x8. The hash table was evaluated
both in simulation and in hardware as part of our memcached prototype, whereby we
relied on a Spirent C-1 network tester appliance for performance testing. Performance
numbers were measured with the UDP-based binary memcached protocol.

Our prototype platform offers a single DDR3 DRAM interface that has to be shared
between the value store and the hash table. Fundamentally, this implies an almost
completely random read pattern in address sequences, resulting in a relatively poor
access performance. This is further aggravated by the fact that the DRAM also needs
to be written in a random fashion, to update the value store and the hash table, intro-
ducing inefficiencies due to the associated data bus turnaround. For most workloads
considered, the average data bus utilization was around 20%.

In our experiments, we deployed a hash table with the Lookup3 function, a capacity
of 2 million items, and a maximum key size of 168 bytes, which accommodates many
common workloads of memcached [Atikoglu et al. 2012]. The table described earlier
occupied less than 400MB in DRAM and was used to address the remaining 23.6GB of
memory allocated to the value store.

6.1. Performance

This section shows that the hash table can meet the line-rate requirement regardless
of key size for both read and write operations. Given our limit for maximum key size,
we issued read and write commands to random addresses with key sizes ranging from
6 to 168 bytes. We performed this experiment first in simulation, with a value size of 1
byte, to measure the maximum throughput the hash table’s pipeline is capable of. Sim-
ilarly, we ran hardware experiments in which we measured the maximum throughput

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

A Hash Table for Line-Rate Data Processing 13:13

T T T T 300
Té)‘ 30 N Simulation : _
S o5 % Hardware (10Gbps) A 250 8
T \ Latency (Hardware) 9
5 20 aS <
S ~_ 4200 8
e 15 ~< 2
7] — \ _/_/_/— g
g 10 S 150 &
s s — 3
-

N — State of the art x86 performance - 100

0 L
20 40 60 80 100 120 140 160

Key size in bytes

Fig. 10. Measured latency and maximum read and write performance of the hash table as function of key
size in simulation and on the FPGA.

of the hash table as part of the memcached prototype. Requests were sent over UDP in
the binary memcached format, yielding packet sizes between 96 and 258 bytes. Given
the minimal packet size of 96 bytes, a maximum packet rate of 13 million requests
per second (MRPS) can be achieved before the network is fully saturated. As shown in
Figure 10, the hash table is overprovisioned and can handle throughput beyond 10Gbps,
servicing a maximum packet rate of more than 31MRPS. This overprovisioning helps
to accommodate for additional overhead associated with resolving address conflicts.
For comparison, we also plotted in the figure the state of the art in memcached perfor-
mance on server-grade CPUs [Wiggins and Langston 2012]. The FPGA-based solution
outperforms a single-socket, eight-core CPU by a factor of 10.

Figure 10 also illustrates the average latency introduced by the hash table on our
evaluation platform. This number is composed of a constant part and a part that
increases linearly with the key size. The constant part of the latency is roughly 90
cycles, of which 60 are a direct result of the memory subsystem. Given a clock period
of 6.4ns, this constant latency adds up to 0.58us. The hash function constitutes the
variable part of the latency, which grows in steps with key size because the key has to
be padded to multiples of 96-bit words for hashing.

The numbers measured in Figure 10 correspond to workloads without address con-
flicts. In the presence of such conflicts, the concurrency control unit introduces back-
pressure in the pipeline, lowering the maximum achievable throughput. On our plat-
form, for instance, the line-rate processing goal may not be achieved for all key sizes if
more than 5% of all operations are stalled despite the overprovisioned throughput. We
argue that for a hash table with 1 million entries, this is unlikely to happen. For this,
we assume that in large hash tables there is a subset of addresses that are frequently
accessed with a uniform random distribution. We refer to this set in the following as
the working set. Further, M stands for the maximum number of items in the critical
section (this is a function of the memory latency), and N for the randomly accessed
address lines in the hash table—that is, the size of the working set. Finally, the frac-
tion of sets and deletes in the operation mix is S. With this, the probability of having
a write operation in the critical section that conflicts with the current item waiting
in the concurrency control unit can be expressed as P, = 1 — (1 — & % S)Y. Based
on this formula, and assuming the common operation mixtures descrif)’ed in Atikoglu
et al. [2012], we can derive that starting from N = 500 out of 1 million entries, the
expected address conflict probability stays under 5% for most workloads and with that
the line-rate performance can be met. For larger values of IV, the probability of stalls
will shrink further, ensuring sufficient throughout with high probability.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

13:14 Z. Istvan et al.

Table Il. The Hash Table on a Virtex6 SX475T Chip

Flip-Flops LUTs BRAMs
Hash Table Pipeline w/o Hash Unit | 13,233 (2%) | 11,477 (4%) | 43 (4%)
Hash Unit (Lookup3) 5,169 (1%) 16,518 (5%) | 24 (2%)

| Hash Table Total [18,402 3%) | 27,995 (9%) | 67 (6%) |

6.2. Resource Consumption

Table IT shows the resource consumption of the hash table module. Overall, the hash
table uses only a small fraction of the chip, with the actual hash unit being its largest
contributor. As explained in previous sections, the size of the hash table is independent
of the number of items stored in DRAM and has no effect on resource requirements.
However, the memory latency determines the size of the concurrency control unit.
Additionally, the number of BRAMs used for buffering depends on both the memory
latency and the maximum allowed key and value sizes.

7. CONCLUSION

In this article, we present the design and the implementation of a hash table for
line-rate data processing on an FPGA. We achieve 10Gbps line-rate performance by
pipelining the hash table and deploying a parallel lookup technique in conjunction with
a fixed bucket size. By separating the keys and their corresponding values to different
memory regions, we can use large bucket sizes, which minimizes the probability of
hash collisions, without sacrificing memory utilization. We handle a large range of
key sizes by striping keys over multiple memory lines, thereby matching memory read
access time with corresponding packet budgets. Furthermore, we utilize a strong hash
function to provide constant overhead regardless of the key contents. Finally, the hash
table is parameterizable in regard to memory latency and memory access bandwidth,
which makes the implementation more portable.

This design has been used in an FPGA-based memcached appliance [Blott et al.
2013], in which it demonstrated 10Gbps throughput while managing 24GB of DRAM
holding millions of key-value pairs. Additionally, the same design has been used in
IBEX, a smart database storage engine running on an FPGA, to perform a Group By
aggregation of database records [Woods et al. 2014].

ACKNOWLEDGMENTS

The authors would like to thank Kimon Karras and Ling Liu from Xilinx Labs and Louis Woods and Jens
Teubner from the Systems Group for their support in this project.

REFERENCES

Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann, Ravi Ramamurthy, and
Ramaratnam Venkatesan. 2013. Orthogonal security with Cipherbase. In Proceedings of the 6th Confer-
ence on Innovative Data Systems Research (CIDR).

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload analysis of
a large-scale key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer Systems. ACM, New York, NY,
53-64.

Masanori Bando, N. Sertac Artan, and H. Jonathan Chao. 2009. Flashlook: 100-Gbps hash-tuned route
lookup architecture. In Proceedings of the International Conference on High Performance Switching and
Routing. IEEE, Los Alamitos, CA, 1-8.

Michaela Blott, Kimon Karras, Ling Liu, Zsolt Istvan, Jeremia Baer, and Kees Vissers. 2013. Achieving
10Gbps line-rate key-value stores with FPGAs. In Proceedings of HotCloud’13: The 5th USENIX Work-
shop on Hot Topics in Cloud Computing.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

A Hash Table for Line-Rate Data Processing 13:15

Andrei Broder and Michael Mitzenmacher. 2001. Using multiple hash functions to improve IP lookups. In
Proceedings of INFOCOM 2001: The 20th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. IEEE, Los Alamitos, CA, 1454-1463.

Andrei Z. Broder and Anna R. Karlin. 1990. Multilevel adaptive hashing. In Proceedings of the 1st Annual
ACM-SIAM Symposium on Discrete Algorithms. 43-53.

Sai Rahul Chalamalasetti, Kevin Lim, Mitch Wright, Alvin AuYoung, Parthasarathy Ranganathan, and
Martin Margala. 2013. An FPGA memcached appliance. In Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. ACM, New York, NY, 245-254.

Convey. 2013. Ramping Up Web Server Memcached Capabilities with Hybrid-Core Computing. White
Paper. Retrieved March 2, 2015, from http://www.conveycomputer.com/files/6113/7998/5068/CONV-13-
047_MCD_whit epaper.pdf.

Christopher Dennl, Daniel Ziener, and Jiirgen Teich. 2013. Acceleration of SQL Restrictions and Aggrega-
tions through FPGA-Based Dynamic Partial Reconfiguration. In Proceedings of the IEEE 21st Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, Los
Alamitos, CA, 25-28.

Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux Journal 2004, 124, 72-74.

Phil Francisco. 2011. The Netezza data appliance architecture: A platform for high performance data ware-
housing and analytics. IBM Redbook.

Zsolt Istvan, Gustavo Alonso, Michaela Blott, and Kees Vissers. 2013. A flexible hash table design for 10Gbps
key-value stores on FPGAs. In Proceedings of the 23rd International Conference on Field Programmable
Logic and Applications (FPL). IEEE, Los Alamitos, CA, 1-8.

Bob Jenkins. 2006. Function for Producing 32bit Hashes for Hash Table Lookup. Retrieved March 2, 2015,
from http://burtleburtle.net/bob/c/lookup3.c.

Brian W. Kernighan, Dennis M. Ritchie, and Per Ejeklint. 1988. The C Programming Language, Vol. 2.
Prentice Hall, Englewood Cliffs, NJ.

Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. 2009. More robust hashing: Cuckoo hashing with a
stash. SIAM Journal on Computing 39, 4, 1543-1561.

Maysam Lavasani, Hari Angepat, and Derek Chiou. 2013. An FPGA-based in-line accelerator for memcached.
IEEE Computer Architecture Letters 2, 1.

Memcached. 2013. Free and Open Source, High-Performance, Distributed Memory Object Caching System.
Available at http://www.memcached.org/.

Rene Mueller, Jens Teubner, and Gustavo Alonso. 2009. Streams on wires: A query compiler for FPGAs.
Proceedings of the VLDB Endowment 2, 1, 229-240.

Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of Algorithms 51, 2, 122-144.

Viktor Pus and Jan Korenek. 2009. Fast and scalable packet classification using perfect hash functions. In
Proceedings of the ACM /SIGDA International Symposium on Field Programmable Gate Arrays. ACM,
New York, NY, 229-236.

Toannis Sourdis, Dionisios Pnevmatikatos, Stephan Wong, and Stamatis Vassiliadis. 2005. A reconfigurable
perfect-hashing scheme for packet inspection. In Proceedings of the International Conference on Field
Programmable Logic and Applications. IEEE, Los Alamitos, CA, 644-647.

Nicholas Weaver, Vern Paxson, and Jose M. Gonzalez. 2007. The Shunt: An FPGA-based accelerator for
network intrusion prevention. In Proceedings of the 2007 ACM /SIGDA 15th International Symposium
on Field Programmable Gate Arrays. ACM, New York, NY, 199-206.

Alex Wiggins and Jimmy Langston. 2012. Enhancing the Scalability of Memcached. Retrieved March 2,
2015, from http:/software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached.

Louis Woods, Zsolt Istvan, and Gustavo Alonso. 2014. Ibex: An intelligent storage engine with support for
advanced SQL off-loading. Proceedings of the VLDB Endowment 7, 11, 963-974.

Louis Woods, Jens Teubner, and Gustavo Alonso. 2010. Complex event detection at wire speed with FPGAs.
Proceedings of the VLDB Endowment 3, 1 2, 660-669.

Received December 2013; revised April 2014; accepted April 2014

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 13, Publication date: March 2015.

http://www.conveycomputer.com/files/6113/7998/5068/CONV-13-047MCDwhit epaper.pdf
http://www.conveycomputer.com/files/6113/7998/5068/CONV-13-047MCDwhit epaper.pdf
http://burtleburtle.net/bob/c/lookup3.c
http://www.memcached.org/
http://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached

