Hyperiedger Fabric
Tutorial

Matteo Campanelll
IMDEA Software Institute

Outline

e What we’ll do: see some Fabric code
 Two use cases (Supplychain; GainSierra

* Intro to some repos we prepared

e Some (basic) exercises

| want to hack asap!
Why should | be paying attention?

e Free code you can reuse in your project!

e “But I’'m going to use some other technology!”
e Some applications/food for thought, or maybe...
e You are curious about Fabric

e You are curious about Typescript, web servers in Python
(Flask), etc

Fabric

> HYPERLEDGER FABRIC

o

Transaction
(Defining Contracts)

5

Transaction
Invoking Contracts

N,

z
O x
v
4>
X
(1]

o

The focus of this tutorial

We are not going to see: Endorsement policies, channels, permissions, etc.

To learn more have a look at:
https://hyperledger-tfabric.readthedocs.io/en/release-1.4/smartcontract/smartcontract.html

Supplychain — Context

: b s bl b
R B ag ERTS =

HOLMEN CARRIER——

The Supplychain
Eco-System

Farmers Shippers Evaluator
“I| produced [item] “I shipped [item] to “I looked at the history
with footprint [F] [other shipper/distributor] of [item]; my evaluation is
and gave it to shipper [S]” with footprint [F]” [:=), -] or:-(]”

Small caveat: encrypted footprints (more on this later)

Demo

e Disclaimer:

e Simplicity as a design/pedagogical choice

e Aspects we ignored included: authentication, proper web/
APl design, etc.

* Feedback on how you would have approached the
architecture/design is welcome

Intro to repo

git clone
https://gitlab.software.imdea.org/zistvan-events/fabric-example-
supplychain

Please do this if you haven’t already:

ecd fabric-example-supply-chain
. /tearDownAll.sh # if you started it in the past

e, /startFabric.sh

https://gitlab.software.imdea.org/zistvan-events/fabric-example-supplychain
https://gitlab.software.imdea.org/zistvan-events/fabric-example-supplychain

Architecture

Browser

>Web Server (Python)

... I

CLI interface (I'ypescrlpt)

Sl merfec Mpesr

Chaincode
(smart contracts in Typescript)

Architecture

supplychain/app/
routes.
Browser . outes.py
Web Server (Python)
T I—
typescript/src/client.ts C'—""te"facf’(rypesc”pt)

Chaincode

(smart contracts in Typescript) chaincode/supplychain/

typescript/src/
supplychain.ts

Intro to chaincode In Fabric

The World State
ke | v

"Belfast” {"University of Ulster, Belfast campus, York Street,
Belfast, BT15 1ED"}

“Coleraine” {"University of Ulster, Coleraine campus, Cromore
Road, Co. Londonderry, BT52 1SA"}

e chaincode <—> Key/Value DB* (the “world state”).

* |n general, a contract can:

e alter the state of the world

* query it

* a dictionary

Recall Our Goal

-~ want in our DB

 Evaluations
e.g. C ge0x14’s footprint is :-)”

e The info used for the evaluations [(“ltemiInfo”-5s)
e .g. Iteminfo1: “FO gives Cabbage0Ox14 10 SO w/ footprint 2”
e e.g. Iteminfo2: “S0 gives Cabbage0x14 to Distributor w/ footprint 1”

¥ It I f 1 _:._ s 195 M % \";.Aa ’7 t I f 2 :; -
) ML LS —HOIVEN CARRER— -~ - eminfo2 &

A
‘& /\.\
Q\- 7@.1/ s " ” ‘ :
W=/ Iy r ? : e
Y . - - O L A #F0 g *
Yy N S "1 y v S} B RO
I 3
;’.‘_‘Tu:— I, v A : - o/ : gl
Z) \ G\ L N7 o A
- ¥ - [P
b ks e = = -
[B iR e 7 PR o R o
B e - 4 Vi y
> . - R ~ A
’

SO

Distributor

Walk-through

“I'd like to query iteminfo[X]”

([X] is an index)

=

_
Browser Web Server
node dist/client
l —-cmd queryItemInfoByIdx
--idx X

l Invokes contract queryItemInfoByIdx

Chaincode
(smart contracts in Typescript)

Guided Exercise:
add querylteminfoByldx to clients

127.0.0.1:5000/queryItemInfo?idx=X

“I’d like to query iteminfo[X]”

([X] is an index)

e |[nthe repo: “queryItemInfoByIdx” exists as a

contract, but not in the clients (web or command-
line)

e (Goal of this exercise is to add it.

Guided Exercise
(continued)

Add command-line option (CLI) Add GET method (web server)
(supplychain/typescript/src/client.ts) (supplychain/app/routes.py)
* Add this code in function dispatchCmd * Define proper @app.route hook and
case "queryItemInfoByIdx": { function (see other hooks in file)

const result = await . .
contract.evaluateTransaction(* Add this code to that function
'queerteTInfoByIQX', idx = request.args.get("idx", "")
args["idx"].toString()); return run_node_cmd (

return result; i ‘queryItemInfoByIdx',

_ _ _ _ ["'——idx", idx])
e Compile to javascript by running

npm run build

(NB: run commands from folder supplychain/ e Add an item tag in 127.0.0.1:5000/farmer;
typescript)

e Run server (./runWebApp.sh)

keep a note of X, its item idx (visualized on

page)
e Test by going to 127.0.0.1:5000/
queryltemInfo?idx=X

e Test (from shell) with
node dist/client
queryltemInfoByIdx

API: altering state

e \We saw that method ctx.stub.getState(key) can® be
used to query the world state

e To alter the world state we can use
ctx.stub.putState(key, value)™*

* or its abstraction BasicContract.query(...) ** or BasicContract.create(...)

Storing Key/Value pairs:
simple Keys with index

* \We can add an ltemlinfo through:

ctx.putState(“iteminfo” + someIldx, Buffer.from(iteminfo))

* Thus we can search all iteminfo-s (in a range) through:

const iterator =

await ctx.stub.getStateByRange(“iteminfo000” , “iteminfo0999");
while (true) A

const res = await iterator.next(); ..

iteminfo =
‘{ "1tem”:"kale",
“src”:"F0",
“dst":"S0",
"footprint": .. }’

What’s a contract?

e A contract:
e ~ code we can run on the blockchain

e |t exposes an interface to the outside world (with
caveats)

 \We can invoke it with ‘submitTransaction’ (altering the
state) or ‘evaluate Transaction’ (Querying the state) [see
client.ts]

Guided Exercise:
ing a Simple Contract

So far: we have only two farmers FO/F1.

Simple Exercise: add contract for further farmer identities
1) add this code to chaincode/supplychain/typescript/src/supplychain.ts

public async addFarmerIdentity(ctx: Context, id: string)

{

const k = "F"+1d;
awalit ctx.stub.putState(k, Buffer.from('\u000o'));
+

2) ./tearDownAll.sh && ./startFabric.sh

Storing Key/Value pairs:
Composite Keys

e \We stored iteminfo-s with keys like
“lteminfo” + idx

e | et’s do something different for evaluations: composite keys

let indexKey = await ctx.stub.createCompositeKey (
“item~eval”, [“kale”, “:=)"1):

await ctx.stub.putState(indexKey, Buffer.from('\u000oo'));

Advantage:
« Can search by arbitrary prefix (through
ctx.stub.getStateByPartial CompositeKey), instead of just by range

A reference so far

Alter State
ctx.stub.putState

Query State (simple)
ctx.stub.getState

Query State by range/prefix

ctx.stub.getStateByRange

ctx.stub.
getStateByPartialCompositeKey
(if using createCompositeKey)

Submit Tx-s (modifies world state)
contract.submitTransaction

Query Tx-s (modifies nothing)
contract.evaluateTransaction

World State

Invoking Contracts

Two words about data-
privacy

Supplychain - Farmer #(

fi

>

7%
‘\\ —y
”!

e Item "kale": FO — S0 with (encrypted) footprir

PEyh7...S/)3w==

Encrypted. But Why? And how?

Why. Because it leaks how good or bad the footprint is.
(NB: in some applications you may want that leakage; here we choose not to.)

How. Each farmer/shipper uses the public key of the evaluator;
only evaluator can see that value now.

What iIf you want to add data
privacy to your application?

a) Consider alternatives to our approach (i.e. explicit enc/dec)

https.//hyperledger-fabric.readthedocs.io/en/release-1.4/private-

data/private-data.html
(here you'll find embedded in Fabric to deal with privacy)

b) If you go for explicit enc/dec, beware of some
caveats.

e You can reuse the library we use (node-rsa)

e Change how keys are stored (we embed the key of the
evaluator in code for simplicity); use a contract?

e Beware of other assumptions (e.g. if evaluator decrypts in
chaincode, can others execute that code?)

https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html

More Crypto for you:
Zero-Knowledge Proofs

v = Vote(candidate)

TX TX

Tx How do | know it contains
a valid vote?

proof that L s
. . . v a X
ciphertext contains e S s
a valid vote; doesn’t leak vote N

{

LLI

t

’ ! |
AN SRV TY

et o

ﬁ,,__,:s
A L
Bl 2
G i
e =

3 T

. /,{’
i 1 fi
ad ;;;!.7
[] (/i(lj 'l{ ;,

What’s Next?

* Present one more repo/application + exercises:
GainSierra

o Will be hanging out till 4pm to help for exercises

e [You can take a break, leave the room and/or start
planning teams/projects if you’d like]

git clone
https://gitlab.software.imdea.org/zistvan-events/fabric-example-
galnslierra

GainSierra

Other Use Case: GainSierra

Madrid

GainSierra: Demo

World State in Gainsierra

e “Bets” (“user 1 commits 1 coin on North tile being in good shape”)
e “Data” about the state of the Sierra (which tiles are in good/bad shape)

e User balance* (how users are faring)

* basic tokens (they are there if you need them in your application)

GainSierra—Exercises

* Go to https://qitlab.software.imdea.org/
zistvan-events/fabric-example-gainsierra/blob/
master/Exercises.md to see a list of three
exercises

* [here are solutions in repo!

 Check out branches origin/exercisel, origin/
exercise2, origin/exercise3

