
Hyperledger Fabric
Tutorial
Matteo Campanelli

IMDEA Software Institute

Outline

• What we’ll do: see some Fabric code

• Two use cases (Supplychain; GainSierra)

• Intro to some repos we prepared

• Some (basic) exercises

I want to hack asap!
Why should I be paying attention?

• Free code you can reuse in your project!

• “But I’m going to use some other technology!”

• Some applications/food for thought, or maybe…

• You are curious about Fabric

• You are curious about Typescript, web servers in Python
(Flask), etc

Fabric

The focus of this tutorial

We are not going to see: Endorsement policies, channels, permissions, etc.
To learn more have a look at:  
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/smartcontract/smartcontract.html

Supplychain — Context

The Supplychain
Eco-System

Farmers

“I produced [item] 
with footprint [F] 

and gave it to shipper [S]”

Shippers

“I shipped [item] to
[other shipper/distributor] 

with footprint [F]”

Evaluator

“I looked at the history
of [item]; my evaluation is

[:-), :-| or :-(]”

Small caveat: encrypted footprints (more on this later)

Demo

• Disclaimer:

• Simplicity as a design/pedagogical choice

• Aspects we ignored included: authentication, proper web/
API design, etc.

• Feedback on how you would have approached the
architecture/design is welcome

Intro to repo
git clone
https://gitlab.software.imdea.org/zistvan-events/fabric-example-
supplychain

•cd fabric-example-supply-chain

•./tearDownAll.sh # if you started it in the past

•./startFabric.sh

Please do this if you haven’t already:

https://gitlab.software.imdea.org/zistvan-events/fabric-example-supplychain
https://gitlab.software.imdea.org/zistvan-events/fabric-example-supplychain

Architecture

Web Server (Python)
Browser

CLI interface (Typescript)

Chaincode  
(smart contracts in Typescript)

Architecture

Web Server (Python)
Browser

CLI interface (Typescript)

Chaincode  
(smart contracts in Typescript)

supplychain/app/
routes.py

supplychain/
typescript/src/client.ts

chaincode/supplychain/
typescript/src/
supplychain.ts

Intro to chaincode in Fabric

The World State

• chaincode <—> Key/Value DB* (the “world state”).

• In general, a contract can:

• alter the state of the world

• query it
* a dictionary

Recall Our Goal
• Evaluations
• e.g. “Cabbage0x14’s footprint is :-)”

• The info used for the evaluations (“ItemInfo”-s)
• e.g. ItemInfo1: “F0 gives Cabbage0x14 to S0 w/ footprint 2”

• e.g. ItemInfo2: “S0 gives Cabbage0x14 to Distributor w/ footprint 1”

ItemInfo1 ItemInfo2

F0

S0

Distributor

Entities we
want in our DB

Walk-through

Web Server Browser

CLI client (Typescript)

Chaincode  
(smart contracts in Typescript)

“I’d like to query iteminfo[X]”
([X] is an index)

node dist/client  
 --cmd queryItemInfoByIdx
 --idx X

127.0.0.1:5000/queryItemInfo?idx=X

Invokes contract queryItemInfoByIdx

Guided Exercise:
add queryItemInfoByIdx to clients

• In the repo: “queryItemInfoByIdx” exists as a
contract, but not in the clients (web or command-
line)

• Goal of this exercise is to add it.

“I’d like to query iteminfo[X]”
([X] is an index)

127.0.0.1:5000/queryItemInfo?idx=X

Guided Exercise
(continued)

• Add this code in function dispatchCmd

case "queryItemInfoByIdx": {
 const result = await
 contract.evaluateTransaction(
 'queryItemInfoByIdx',
 args["idx"].toString());
 return result; }

•Compile to javascript by running 
npm run build  
(NB: run commands from folder supplychain/
typescript)

•Test (from shell) with  
node dist/client
queryItemInfoByIdx  

Add command-line option (CLI)
(supplychain/typescript/src/client.ts)

Add GET method (web server)
(supplychain/app/routes.py)

• Define proper @app.route hook and
function (see other hooks in file)

• Add this code to that function

 idx = request.args.get("idx", "")
 return run_node_cmd(
 ‘queryItemInfoByIdx',
 ["--idx", idx])

• Run server (./runWebApp.sh)

• Add an item tag in 127.0.0.1:5000/farmer;

keep a note of X, its item idx (visualized on
page)

• Test by going to 127.0.0.1:5000/
queryItemInfo?idx=X

API: altering state

• We saw that method ctx.stub.getState(key) can* be
used to query the world state

• To alter the world state we can use
ctx.stub.putState(key, value)**

* or its abstraction BasicContract.query(…) ** or BasicContract.create(…)

Storing Key/Value pairs:
simple keys with index

• We can add an ItemInfo through:

• Thus we can search all iteminfo-s (in a range) through:

iteminfo =
 ‘{ “item”:"kale",

“src”:”F0",
“dst":"S0",

"footprint": … }’
F0 S0

“kale”

ctx.putState(“iteminfo” + someIdx, Buffer.from(iteminfo))

const iterator =
 await ctx.stub.getStateByRange(“iteminfo000” , “iteminfo999”);
while (true) {
 const res = await iterator.next(); …

What’s a contract?

• A contract:
• ~ code we can run on the blockchain

• It exposes an interface to the outside world (with
caveats)

• We can invoke it with ‘submitTransaction’ (altering the
state) or ‘evaluateTransaction’ (querying the state) [see
client.ts]

Guided Exercise:
Adding a Simple Contract

So far: we have only two farmers F0/F1.

Simple Exercise: add contract for further farmer identities

 public async addFarmerIdentity(ctx: Context, id: string)
 {
 const k = "F"+id;
 await ctx.stub.putState(k, Buffer.from('\u0000'));
 }

1) add this code to chaincode/supplychain/typescript/src/supplychain.ts

2) ./tearDownAll.sh && ./startFabric.sh

Storing Key/Value pairs:
Composite Keys

• We stored iteminfo-s with keys like 
 “iteminfo” + idx

• Let’s do something different for evaluations: composite keys

let indexKey = await ctx.stub.createCompositeKey(
 “item~eval”, [“kale”, “:-)”]);
await ctx.stub.putState(indexKey, Buffer.from('\u0000'));

Advantage:
• Can search by arbitrary prefix (through

ctx.stub.getStateByPartialCompositeKey), instead of just by range

A reference so far

Query State (simple)

Query State by range/prefix

Alter State
ctx.stub.putState

ctx.stub.getState

ctx.stub.getStateByRange
ctx.stub.
 getStateByPartialCompositeKey
(if using createCompositeKey)

World State

Submit Tx-s (modifies world state)

Invoking Contracts

Query Tx-s (modifies nothing)
contract.evaluateTransaction

contract.submitTransaction

Two words about data-
privacy

Why. Because it leaks how good or bad the footprint is. 
 (NB: in some applications you may want that leakage; here we choose not to.)

How. Each farmer/shipper uses the public key of the evaluator;

only evaluator can see that value now. 

Encrypted. But Why? And how?

What if you want to add data
privacy to your application?

a) Consider alternatives to our approach (i.e. explicit enc/dec)

https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-
data/private-data.html

(here you'll find embedded in Fabric to deal with privacy)

b) If you go for explicit enc/dec, beware of some
caveats.

• You can reuse the library we use (node-rsa)

• Change how keys are stored (we embed the key of the

evaluator in code for simplicity); use a contract?

• Beware of other assumptions (e.g. if evaluator decrypts in

chaincode, can others execute that code?)

https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html

More Crypto for you:
Zero-Knowledge Proofs

proof that
ciphertext contains

a valid vote; doesn’t leak vote

π

Tx
Tx
...
Tx

Tx
Tx
...
Tx

v = Vote(candidate)

= Encrypt(v) How do I know it contains 
a valid vote?

What’s Next?

• Present one more repo/application + exercises:
GainSierra

• Will be hanging out till 4pm to help for exercises

• [You can take a break, leave the room and/or start
planning teams/projects if you’d like]

git clone
https://gitlab.software.imdea.org/zistvan-events/fabric-example-
gainsierra

GainSierra

Other Use Case: GainSierra

Madrid

GainSierra: Demo

World State in Gainsierra

• “Bets” (“user 1 commits 1 coin on North tile being in good shape”)

• “Data” about the state of the Sierra (which tiles are in good/bad shape)

• User balance* (how users are faring)

* basic tokens (they are there if you need them in your application)

GainSierra—Exercises

• Go to https://gitlab.software.imdea.org/
zistvan-events/fabric-example-gainsierra/blob/
master/Exercises.md to see a list of three
exercises

• There are solutions in repo!

• Check out branches origin/exercise1, origin/

exercise2, origin/exercise3

