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Abstract

Even though there have been a large number of proposals to accelerate databases using specialized
hardware, often the opinion of the community is pessimistic: the performance and energy efficiency
benefits of specialization are seen to be outweighed by the limitations of the proposed solutions and the
additional complexity of including specialized hardware, such as field programmable gate arrays (FP-
GAs), in servers. Recently, however, as an effect of stagnating CPU performance, server architectures
started to incorporate various programmable hardware components, ranging from smart network inter-
face cards, through SSDs with offloading capabilities, to near-CPU accelerators. This availability of
heterogeneous hardware brings opportunities to databases and we make the case that there is cause for
optimism. In the light of a shifting hardware landscape and emerging analytics workloads, it is time to
revisit our stance on hardware acceleration.

In this paper we highlight several challenges that have traditionally hindered the deployment of
hardware acceleration in databases and explain how they have been alleviated or removed altogether
by recent research results and the changing hardware landscape. We also highlight that, now that these
challenges have been addressed, a new set of questions emerge around deep integration of heteroge-
neous programmable hardware in tomorrow’s databases, for which answers can likely be found only in
collaboration with researchers from other fields.

1 Introduction

There is a rich history of projects aiming to specialize parts of, or entire, computers to databases. Notable exam-
ples include the Database Machine from the seventies [1], Gamma [2], the Netezza data appliance [3], the Q100
DB processor [4], and Oracle Rapid [5] most recently. These works demonstrate dramatically increased energy
efficiency and better performance thanks to a hardware/software co-design approach. However, CPUs, until
very recently, enjoyed a performance scaling in line with Moore’s law and the time and effort of designing and
delivering specialized hardware was not economical. This changed with the stagnation in CPU performance [6]
in the last decade and the simultaneous increase in networking speeds that has created a clear need for hardware
acceleration.

Initially, the move to the cloud worked against hardware acceleration for databases due to the cloud’s re-
liance on commodity hardware and the need to cater to many different users and applications. In the meantime,
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however, new data-intensive workloads emerged in the cloud (most notably machine learning), that suffered
from stagnating CPU performance and could benefit from various types of compute or networking acceleration.
If we look at today’s cloud offering and datacenters, an exciting, heterogeneous, landscape emerges: Machine
learning workloads in the Google Cloud are accelerated with Tensor Processing Units (TPUs) [8], increasing
energy efficiency by at least an order of magnitude when compared to GPUs. Amazon, Baidu and Huawei
all offer Field Programmable Gate Arrays (FPGAs) by the hour in their cloud to users1 to implement custom
accelerators. Microsoft has been also deploying FPGAs in the Azure Cloud, to accelerate their infrastructure
and machine learning pipelines, in their Project Catapult [7]. Furthermore, Intel has been experimenting with
including small programmable elements on their Xeon CPUs [9] that can be tailored to the compute-intensive
task at hand.

The recent developments discussed above mean that multi-purpose programmable hardware accelerators are
entering the mainstream and, from the point of view of the database, they can be exploited without having to
incur additional cost for deployment. Specialized hardware is most often used to accelerate compute-bound
operations and the ongoing shift in the analytical workloads ran on databases towards machine learning2 brings
significantly more compute-intensive operations than the core SQL operators. What’s more, there are proposals
for using machine learning methods to replace parts of the decision making and optimization processes inside
databases [10]. These emerging operators bring new opportunities in hardware acceleration both inside databases
and for user workloads. It is important to note however that, now that hardware acceleration of real-world
workloads is economically feasible, new challenges emerge in the area of deep integration of programmable
hardware in databases.

In this paper we make the case that the two trends mentioned above, namely, datacenters becoming increas-
ingly heterogeneous and workloads opening towards machine learning, combined with the state of the art in
hardware acceleration for databases tackle most of the past hindrances of programmable hardware adoption and
are a cause for optimism. We will focus on Field Programmable Gate Arrays (FPGAs) as a representative exam-
ple and discuss how several significant challenges have been alleviated recently. In the second part of this paper
we highlight open questions around the topics of resource management and query planning/compilation in the
presence of programmable hardware accelerators.

2 Background

2.1 Programmable Hardware in the Datacenter

The wide range of programmable hardware devices proposed and already deployed in datacenter can be catego-
rized depending on their location with regards to the data source and CPU into three categories (see Figure 1):
on the side, in data-path and co-processor.

The most traditional way we think about accelerators is as being on the side, attached to the processor via an
interconnect, for instance PCIe. Importantly, in this deployment scenario the CPU owns the data and explicitly
sends it to the accelerator, resulting typically in significant additional latency per operation (due to communica-
tion latency and data transformation overhead). This encourages offloading operations at large granularity and
without requiring back and forth communication between the CPU and the accelerator. GPUs are a common
example of these kinds of accelerators, and were shown to be useful, for instance, to offload LIKE-based string
queries [11]. There have also been proposals that deploy FPGAs this way for data filtering and decompression,
e.g., in the work by Sukhwani et al. [12].

Another way of placing acceleration functionality in the architecture is in data-path. This can be thought
of as a generalized version of near-data processing [13], and the goal of the accelerator is to filter or transform

1At the moment of writing it costs around $1.65/h to rent an Amazon EC2 F1 instance.
2For instance, Microsoft SQL Server now includes machine learning plug-ins. https://docs.microsoft.com/en-us/

sql/advanced-analytics/what-is-sql-server-machine-learning
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Figure 1: Programmable hardware accelerators can be deployed either as “on the side” accelerator (e.g., GPUs),
as “in data-path” accelerator (e.g. smart NICs, smart SSD), or as co-processor (e.g. in Oracle DAX or Intel
Xeon+FPGA).

data at the speed that it is received from the data source (designs that can’t guarantee this could end up slowing
the entire system down [14]). Much of the research effort in this space has been centered around in-SSD
processing [15][27], but more recently, there has been efforts in using RDMA network interface cards (NICs)
to accelerate distributed databases [17][18]. These NICs are limited to data manipulation acceleration, but there
are efforts to make NICs and networking hardware in general, more programmable [19]. This will allow in the
future to offload complex, application-specific, operations.

The third deployment option, namely, co-processor, is also becoming increasingly available in the form of
CPUs that integrate domain-specific or general-purpose programmable co-processors: The Oracle DAX [20]
is an example of the former because it implements database-specific operations (data decompression, scan
acceleration, comparison-based filtering) on data in the last level cache. Thanks to its specialized nature, it
occupies negligible chip space and does not increase the cost of the CPU. As opposed to the DAX, the Intel
Xeon+FPGA [9] platform offers an FPGA beside the CPU cores for general-purpose acceleration. The FPGA
has high bandwidth cache coherent access to the main memory of the CPU and can be reprogrammed in different
ways. This creates acceleration opportunities without the usual overhead of the on the side accelerators.

2.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are chips that can be programmed to implement arbitrary cir-
cuits and historically have been used to validate designs that later would be turned into Application-Specific
Integrated Circuits (ASICs). They have recently become a target for implementing data processing accelerators
in datacenters thanks to their flexibility (their role can change over time, as opposed to an ASIC) and order of
magnitude better energy efficiency than that of traditional CPUs [21]. FPGAs are composed of look-up tables
(LUTs), on-chip memory (BRAM) and digital signal processing units (DSPs). All these components can be
configured and interconnected flexibly, allowing the programmer to implement any hardware logic on top (Fig-
ure 2). It is not uncommon to have small ARM cores integrated inside the programmable fabric either (e.g., in
Xilinx’s Zynq product line).

FPGAs offer two types of parallelism: First, pipeline parallelism means that complex functionality can be
executed in steps without reducing throughput. The benefit of FPGAs in this context is that the communication
between pipeline stages is very efficient thanks to the physical proximity and availability of on-chip memory
to construct FIFO buffers. The second type of parallelism that is often exploited on FPGAs is data-parallel
execution. This is like SIMD (single instruction multiple data) processing in CPUs, but it can also implement
a SPMD (single program multiple data) paradigm if the operations are coarser grained. What makes FPGAs
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Figure 2: The typical steps of programming FPGAs are shown above. The tools spend most of their time
mapping the synthesized circuit onto the FPGA. This is because the chip is composed of many programmable
gates and memories that have to be configured and connected together in a 2D space, ensuring that signals can
propagate correctly within clock periods.

interesting for acceleration is that these two types of parallelism can be combined even inside a single application
module to provide both complex processing and scalable throughput.

As Figure 2 shows, FPGAs are programmed by synthesizing a circuit from a hardware definition language,
such as Verilog or VHLD, and creating a “bitstream” for a specific device type that defines the behavior of every
logic resource on the chip. This is an expensive step as it requires the tool to lay out the circuit on the “chip
surface” and define connections and routing of these connections between circuit elements. Since FPGAs have
flexible clocking options and the programmer is free to define a target frequency (e.g., 300MHz), the tools have
to set up routing such that signals are propagated within the clock periods (which can become impossible with
too high frequencies).

It is also possible to perform partial reconfiguration (PR), meaning that only a portion of the FPGAs re-
sources are reprogrammed (illustrated on the right-hand side of Figure 2). This means that, for instance, in a
database use-case a hardware-accelerated operator can be replaced with another one without having to bring the
device offline. PR, however, comes with limitations: the regions can only be defined at coarse granularity, their
size can’t be redefined at runtime and their reprogramming requires milliseconds.

One important limitation of FPGAs is that all application logic occupies chip space and there is no possibility
of “paging” code in or out dynamically. This means that the complexity of the operator that is being offloaded
is limited by the available logic resources (area) on the FPGA. This also applies to the “state” of an algorithm
that is often stored as data in the on-chip BRAM memories. These can be accessed in a single clock cycle, but
if the data doesn’t fit in the available BRAM, high latency off-chip DRAM has to be used.

3 Sources of Pessimism

Many early projects of FPGA-based database acceleration propose deploying them as on the side accelerators
for row stores [12][22][23] and they demonstrate that FPGAs are able to successfully accelerate selection, pro-
jection, group-by aggregation, joins and even sorting by an order of magnitude when compared to MySQL and
Postgres, for instance. However, the benefits are significantly reduced once one factors in the cost of com-
munication over PCIe and the software overhead of preparing the data for the FPGA to work on (sometimes
pre-parsing, often copying pages).

In traditional, on the side deployments, the high latency communication (microseconds over PCIe) often
forces designs to move entire operators onto the FPGA, even if only parts of the operator were a good match for
the hardware. This leads to complications, because even though FPGAs excel at parallel and pipelined execution,
they behave poorly when an algorithm requires iterative “loops” or has widely branching “if-then-else” logic.
In the case of the former, CPUs deliver higher performance thanks to their higher clock rates. In the case of the
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latter, the branching logic needs to be mapped to logic gates that encode all outcomes, resulting in very large
circuits. Since the space on the FPGA is limited, the larger circuits result in reduced parallelism, which in turn
leads to lower throughput. This means that even though FPGAs could be successful in accelerating the common
case of an algorithm, they might not be able to handle corner cases, and in practice this leads to uncertainty in
the query optimizer or even to wasted work, if an unexpected corner case is encountered during execution.

In parallel with accelerator-based efforts, there have been numerous advances in the space of analytical
databases. Today, column-oriented databases, such as MonetDB [24], are widely deployed and typically outper-
form row-oriented ones by at least an order of magnitude and can take advantage of many-core CPUs efficiently.
As a result, the speedups that FPGAs offer when targeting core SQL operators have shrunk3 and often are
not enough to motivate the additional effort of integrating specialized hardware in the server architecture.

For the above reasons, FPGA-based acceleration ideas are often received with pessimism. However, changes
in the hardware available in datacenters and the cloud, as well as the changes in database architecture and user
workloads, create novel opportunities for FPGA-based acceleration. In the next section we discuss these in more
detail and provide examples of how they can be exploited.

4 Reasons for Optimism

4.1 Changing Architectures

With the increasing adoption of distributed architectures for analytical databases, as well as the disaggregation
efforts in the datacenter [25], there are numerous opportunities for moving computation closer to the data source
to reduce the data movement bottlenecks. These bottlenecks arise from the fact that the access bandwidths
are higher closer to the data source than over the network/interconnect and they can be eliminated by
pushing filtering or similar data reduction operations closer to source. Thus, the main goal of having the
accelerator in the data-path is to maintain the data access bandwidth high while reducing the amount of
data sent to the processor.

The data source is often (network-attached) flash storage and recent projects, for instance, YourSQL [15],
BlueDBM [16] and Ibex [27], show that it is possible to execute SQL operations as the data is moving from
storage to processing at high bandwidth. Another use-case that can benefit from data reduction in a similar way
is ETL. Recent work [26] has demonstrated that specialized hardware can be used to offer a wide range of ETL
operations at high data rate, including: (de)compression, parsing from formats such as CSV or JSON, pattern
matching and histogram creation.

In Ibex we deployed an FPGA between an SSD and the CPU, offering several operators that can be plugged
into MySQL’s query plans. As Figure 3 shows, these include scans, projection, filtering and group-by aggre-
gation, and were chosen in a way that ensures that the processing in hardware will reduce the final data size
for most queries. For this reason, Ibex does not accelerate joins, since these would potentially result in larger
outputs than the input and slow down the system this way. The rest of the operations are all performed at the
rate of the data arriving from storage.

As opposed to on the side accelerators, in this space there are two possible options for who “owns” the data.
In the case of smart SSDs, data is typically managed by the host database [27][15]. In contrast, in the case of
distributed storage accessed over the network, it is possible to explore designs where the data is both processed
and managed by the specialized hardware device as, for instance, in Caribou [28][29], our distributed key-value
store that is built using only FPGAs. In Caribou, the FPGAs, in addition to network line-rate data processing,
implements the hash table data structure and memory allocator necessary for managing large amounts of data,
as well as, data replication techniques to ensure that no records are lost or corrupted in case of device failures or

3Using specialized hardware can still compete with multi-cores if we factor in energy efficiency (Operations/s/Watt) but in many
cases the metric that is of interest is database throughput and response time.
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Figure 3: In Ibex we showcase several operations that can be performed on the data as it is read from storage
with the goal of reducing the number of tuples that arrive at the CPU.

network partitions. This results in a high throughput energy efficient distributed storage layer that, even though
is built using FPGAs, can be used as a drop-in replacement for software-based solutions [29].

In many ways, in data-path accelerators provide similar acceleration options as the on the side ones because
data is still moved over a network (similarly to an interconnect in the case of the latter) that requires processing
it in batches large enough to warrant the latency overhead. However, if FPGAs are deployed as co-processors,
this overhead is drastically reduced and new opportunities open up, since the latency to the FPGA is in the same
order of magnitude as a cross-socket memory access. The Centaur platform [30], for instance, exposes the FPGA
of an Intel Xeon+FPGA platform using an efficient “hardware thread” API. As a result, in this co-processor
scenario, the database can offload functionality as if spawning a parallel thread and the FPGA can be
used for processing even just a handful of tuples – as we point out in the next subsection, there are emerging
use-cases where this low latency acceleration is a game-changer.

4.2 Emerging Compute-Intensive Workloads

The examples in the previous subsection showed how to reduce the data access bottleneck with an in data-
path accelerator targeting common SQL operators. It is unclear, however, if this strategy can be applied for
co-processors as well. Modern database engines, that make use of the multi-core CPUs and their wide SIMD
units, are rarely compute bound once the data is loaded into main memory. Unless reading data from storage,
offloading core SQL operators is unlikely to bring orders of magnitudes improvements in performance.
There is, however, cause for optimism if we look beyond such operators and in the direction of machine
learning, both training and inference.

A significant portion of machine learning pipelines operate on relational data and the case has been made
that there is a benefit in integrating these directly in the database [31]. Furthermore, there is also interest in
including such components in the internal modules of the databases [10], to perform optimizations depending
on the workload characteristics and a model. Since this could require on-line retraining that, without hardware
acceleration, could hurt user throughput significantly, new opportunities open up for FPGAs. Acceleration of
training as part of user workloads is being explored, for instance in Dana [31]. The iterative and computation-
heavy nature of training operators makes them less sensitive to the latency issues introduced by using on the
side accelerators and therefore could revive the interest in these acceleration platforms. Amazon, for instance,
is already offering FPGAs running Xilinx’s OpenCL-based compute framework as PCIe-attached accelerators.

In the “ML-backed” database scenario it will also be paramount to be able to take decisions with low latency
using learned models – this further motivates the use of FPGAs. Even though GPUs are a de-facto standard for
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machine learning acceleration, when it comes to low latency inference, FPGAs can offer benefits since they do
not require batching in their processing modules: recent work by Owaida et al. [32] and Umuroglu et al. [33]
demonstrates, for instance, how FPGAs can be used very efficiently to accelerate inference using decision trees,
respectively, neural networks.

4.3 Hybrid Approaches to Acceleration

Since all functionality, regardless whether used or not, occupies chip space on the FPGA, corner cases often
can’t be efficiently handled in hardware. For this reason, it is important to design accelerators such that
they behave predictably even if the particular instance of the problem can’t be fully handled. As we
illustrate below with two examples from our work, state of the art solutions overcame such cases by splitting
functionality between FPGA and software, such that the part on the FPGA remains beneficial to execution time
regardless of the input data contents or distribution.

In Ibex [27] we used a hybrid methodology to implement a group-by operator that supports min, max,
count and sum (in order to compute avg, we used query rewriting to compute the count and sums). This
operator is built around a small hash table that collects the aggregate values. In line with FPGA best-practices,
the hash table is of fixed size and is implemented in BRAM. The reason for this is that this way it is possible to
guarantee fixed bandwidth operation, regardless of the data contents, because the FPGA doesn’t have to pause
processing to resize the table. Unfortunately, this approach has a drawback: if a query had just one more group
than the size of the hash table, the FPGA couldn’t be used – and this information is often not available up front.
We overcome this situation by post-processing the results of the group-by operator on the FPGA in software.
The hardware returns results from the group by aggregation unit in a format that allows the database to perform
an additional aggregation step on top without having to apply projections on the tuples or parse them in the first
place (see Figure 4). If, during the hash table operations collisions are encountered that can’t be solved, a partial
aggregate is evicted from the table and sent to the software post-processor. Once all the data has been processed
on the FPGA, the contents of the hash table are sent to the software post-processor to compute the final groups.
This results in a behavior where, if all the groups could be computed on the FPGA, the final software step has
to perform virtually no work (assuming that the number of resulting groups is significantly smaller than the
cardinality of the table), and otherwise the software executes the group by aggregation as if there wouldn’t be
any FPGA present (though still benefits from projections and selections).

The regular expression-based LIKE operator that we implemented in MonetDB [34] running on top of the
Intel Xeon+FPGA platform is another example of the hybrid operator methodology. If the expression could
not be encoded in its entirety on the FPGA, because, for instance, it contains too many characters (such as the

Figure 4: By implementing operators in a way that allows hybrid computation, the FPGA accelerator can reduce
data sizes over the bottleneck connection to the CPU in most cases. In this example of Ibex’s group-by operator,
if we would choose an “all or nothing approach”, moving the data to be aggregated to the CPU could become
the bottleneck.
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Figure 5: Even if only part of the regular expression fits on the FPGA it is worth to offload it because the
post-processing becomes cheaper, resulting in an overall faster execution.

bottom example in Figure 5), we cut it at the last possible wildcard and process the first part of the expression on
the FPGA and the second part in software. For each string, the FPGA operator returns an index that signifies the
end of the location where the regular expression matched the string. The software can pick up processing from
this point in case of hybrid processing and match the rest of the expression. In any case entire expression fits on
the FPGA, however, the software has no additional work to do. In Figure 5 we illustrate how, when compared
to a single-threaded execution in MonetDB, the hybrid solution is always faster than the software-only one (for
more details see [34]).

One aspect that makes the integration of programmable hardware in databases challenging is the change in
the predictability of query runtimes. Therefore, in our work we aim to design circuits whose throughput is not
affected by the problem instance they work on. This way the query optimizer can predict the rate at which data
will be processed/filtered on the FPGA and with this information it can reliably decide when to offload. One
example of such a design is the regular expression module we presented above. Since the overhead of compiling
regular expressions to circuits and then performing partial reconfiguration (PR) could take longer than executing
an entire query, we took a different approach: we created a “universal” automaton that could implement any
expression within some limits on the number of distinct characters to detect and the number of states. Small
on-chip memories are used to describe the state machine and the characters of the regular expression, and their
contents can be loaded at runtime in nanoseconds. We laid out this state machine as a pipeline, that processes
one character per clock cycle, regardless of the contents of the on-chip memories. The conversion from a regular
expression written by a user to the configuration parameters is performed in software but is orders of magnitude
cheaper than circuit synthesis.

5 The Road that Lies Ahead

5.1 Managing Programmable Hardware

How to best integrate hardware that, while reprogrammable, will never be as flexible as software?
Should the operating system/hypervisor control it, or can future database learn to manage it?

Even though there are efforts in the FPGA community to speed up the process of partial reconfiguration, it
is unlikely that the overhead of this operation will ever be as small as that of a software context switch. As a
result, databases must find ways to adapt to the idea of running on programmable hardware that, even though,
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can change over time, doesn’t have the flexibility of software. The main question that needs to be answered in
this space is who will “own” the acceleration functionality, because this also defines whether the database needs
only to be able to compile its queries to take advantage of the accelerators, or whether it could also synthesize
fully custom accelerators depending on the workload.

If it is the OS/hypervisor that controls the accelerator, then the database still has to be able to adapt to
different underlying hardware acceleration functionality, that will be likely both designed and managed by the
infrastructure/cloud provider. In this scenario, the database has to create query plans that take advantage of the
specific machine’s acceleration opportunities. For this, it is likely that we can reuse techniques that are already
present in databases for compiling code for different target CPU features such as SIMD units [39].

Alternatively, if the database takes full ownership of the accelerator, it will have more responsibility but also
greater opportunities. Instead of relying on the cloud provider to design general-purpose acceleration units that
might or might not match the database’s needs, the database developer can design and synthesize the right ones
and integrate them tighter with the database. What’s more, the database could even generate and synthesize
workload-specific accelerators at runtime.

In DoppioDB [35][30] we explored the case where the database manages the accelerator. The role of the
operating system is to set up a basic infrastructure on the FPGA, configuring it with several “slots” that can
be filled in using partial reconfiguration (we call these slots hardware threads because the interface to them in
software is similar to a function call on a new thread). Once the database has started, the FPGA gets access to the
process’s virtual memory space and the database can explicitly manage what tasks the different slots perform,
choosing, in our prototype, from a small library of available operators. In DoppioDB, instead of focusing only
on the usual SQL operators like selection or joins, we began exploring how one could extend what the database
is capable of, targeting machine learning type of operators, such as training a model using stochastic gradient
descent or running inference with decision trees. This functionality was exposed using a UDF mechanism, but
in the future could be integrated much tighter with the database. The research question that emerges is how to
populate the hardware operator library and what granularity these operators should have. Recent work by Kara
et al. [41] shows that it is possible to offload sub-operators successfully to the FPGA. However, the identification
of generic enough sub-operators that can be deployed on an accelerator and parameterized/composed at runtime
remains an open challenge.

5.2 Compilation/Synthesis for Programmable Hardware

Are there reusable building blocks that would benefit query compilation for programmable hardware?
Should databases have their own DSLs from which to generate hardware accelerators?

The second big question is how to express acceleration functionality for database use-cases in an efficient
way. As opposed to CPUs or GPUs where the architecture (ISA, caches, etc.) is fixed, in an FPGA it is not. This
adds a layer of complexity to the problem of compiling operators, as well as query planning in general. Given
even just the heterogeneity of modern CPUs and their different SIMD units, there is already a push for databases
to incorporate more and more compiler ideas [39][40].

The side effect of bringing more ideas from compilers into databases is that it will likely be also easier
integrate a DSLs for hardware accelerators [36][37][38] into the database. However, many of these solutions
are targeting compute kernels written in languages such as OpenCL [36], that are a better fit for HPC and
machine learning type functionality than database operations. Therefore, novel ideas are needed that bridge the
space between databases and languages/compilers for specialized hardware. One possible direction to explore
is related to the design of the Spatial language and compiler [37]. Spatial approaches the problem of writing
parallel code for accelerators in a way that accounts for the fact that FPGA circuits physically laid out on the
chip. Given that query plans are often composed by a set of sub-operators that are parameterized differently to
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implement, for instance, different join types, these could be an intermediate step between SQL and hardware
circuit that allows the database to offload a pipeline of such sub-operators to the FPGA in an automated manner.

Another aspect that makes translating operators to hardware-based accelerators challenging comes from the
fact that not all functionality will fit on the device. This is true regardless whether we target an FPGA, a P4-based
switch or SmartNIC, or an ASIC-based solution such as the DAX. Therefore, even if the best case of an operator
can be efficiently translated to hardware, corner cases will have to be handled without significantly impacting
performance. For this reason, the challenge of compilation is also related to the ideas discussed before around
hybrid execution and query planning. Frameworks that compile queries to such platforms will have to provide
software-based post-processing functionality to ensure that corner cases are gracefully handled. The challenge
in this hybrid computation is to find suitable points where to split the functionality in an automated way.

6 Conclusion

Even though it has been approached pessimistically for a long time, we argue that the use of specialized hardware
in analytical databases has a positive outlook. To support this argument, we discussed the past and future
challenges of including a specific kind of hardware accelerator, namely FPGAs, in databases.

To address fears that deploying FPGAs always brings high overheads that reduce their “raw” speedup, we
highlighted how, in today’s distributed database landscape, they can be used to reduce bottlenecks of data move-
ment by positioning them in data-path. Since they can process data at the rate at which it is retrieved from the
data source, they never slow down data access, even if there is no opportunity for acceleration. We also discussed
the opportunities that novel, machine learning, workloads bring. Their operators are typically compute bound
on CPUs and using FPGAs we can achieve significant speedups even when compared to an entire socket with
multiple cores. Finally, to demonstrate that it is possible to design FPGA-based operators that behave gracefully
even if the entire functionality of the operator doesn’t fit on the device, we discussed two examples from our
previous work that implement hybrid computation across FPGA and CPU (a group-by operator and a regular
expression matcher).

We also identify two areas in which significant progress is required before the inclusion of heterogeneous
hardware in databases becomes the norm rather than the exception. One is finding ways to actively manage
the programmable hardware underneath the database, shaping it to workloads using partial reconfiguration and
parameterizable circuits. The second question is about finding the right programming primitives for hardware
accelerators in the context of databases operators, to avoid designing from scratch each new accelerator idea,
and to allow the database to offload parts of a query more flexibly at runtime. It is unlikely that we can provide
answers for both questions only from inside the database community and will have to instead collaborate with
researchers working in the areas of operating systems, programming languages and compilers.
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