Lecture 1;
What do we measure?

PAMS’18

Zsolt Istvan

zsolt.istvan@imdea.org

Slide contents heavily influenced by G. Alonso’s
Advanced Systems Lab lecture slides.

PAMS18

Why do we measure performance?

e Our goal is to understand the behavior of the system, predict its
behavior

* “We want to use Apache Kafka in our project. Can we deliver 10k operations/s
to our clients if we use it?”

* “Our application has 1 million users, uploading 1 photo/day. How many more

users can the database handle before we need to upgrade our
infrastructure?”

* “The encryption module | am developing is slowing down the rest of the
system, how do | figure out what part of the code needs redesign?”

* Modelling can help answer what-if questions.

All Models Are Wrong, Some Are Useful (G. Box)

* We should have a hypothesis in mind that we want to prove/disprove

* A model which is good in predicting one aspect, might not be useful
for other aspects

* Avoid “overfitting” — should not have to redesign whole model when
moving from from Xeon CPU to other...

Ways of looking at the system

“Black box” modelling
* No knowledge/consideration of components

* Issue requests, measure how long answers
take

“White box” modelling

* Takes into account internal components

e Can become arbitrarily intricate

* Most complex model not always the best!

PAMS18 4

Open system

* Request can arrive “at any time”
* Potentially infinite clients

* The rate at which requests arrive are not
influenced by the server

* E.g. Web Server, (your email inbox)

* Benchmarking:
» Test the system with specific throughput levels
* Test the system when pushed beyond its capacity

PAMS18

Closed system

e Limited number of clients

* Each client waits for a response before sending
next request

* The load is self-adjusting
* E.g. database with local clients

* Benchmarking:
* Behavior with increasing number of clients
 Verifying that the behavior is stable

PAMS18

®

Throughput

* Requests completed successfully per unit of time

* e.g. Pizzas delivered per week, KVS accesses per second, etc.
* Don’t count failed requests!

* Can be measured by clients or server — ideally the same

* We can talk of throughput in conjunction with a user workload

* |f we only send one request per hour, doesn’t mean the server couldn’t
handle more!

* (We’ll see some examples at the end)

Throughput in practice

Saturation

——|deal
-e=|\leasured

O [[[[[[[|
0) 10 20 30 40 50 60 /0
Client load [ops/s]

PAMS18 8

Response time

* Time it takes to handle a request and send back a response
* Must define what we measure!
* Only consider successful requests

* Average response time is common metric
* But minimum/maximum, uniformity can be just as important!
e Guarantee some behavior to users (SLAs)

* In a closed system: Throughput connected to average response time
 Minimum recorder response time to determine upper bound for throughput*

Response time in practice

3 Saturation
= 2,5
c 2
15
§ —-|deal
73 ! --Measured
« 0,5
O [[[[[[[|

o

10 20 30 40 50 60 /0
Client load [ops/s]

PAMS18 10

Interactive response time law

Can be applied to closed systems:

e Each user thinks for some time (2), submits a request, waits for a
response. Repeats.

* Throughput: X=Jobs/Time

* How many jobs?

Interactive response time law

* Each client needs Z + R (response time) time per request
* Client’s sending rate: 1/(R+2)
* Number of jobs sent in time T: T/(R+2)

 Rate for N clients: N/(R+2)
* Number of jobs sent in time T: N*T/(R+2)

* X=N/(R+Z)
* R=(N/X)-2

PAMS18

12

In plots...

system Response Time — R(N)

15

10

=15

User Load (N)

PAMS18

13

In plots...

\

|
|
|
I
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|

4.00 -

1
{
i
i
O Q
) S

T T
=] L]
i -)
g [an} LAY J

1.50 -
1.00 -

(N)X —ndybnoiy] weisAs

0,50 +

0.00

15 20 25 30 a5 40
User Load (N)

10

14

PAMS18

In plots...

16 -

14 4

— —
(] [+
| I

Response Time - R(N)

0.00

Q.50

1.00 1.50

System Throughput - X(N)

PAMS18

2.00

2.50

15

Looks simple but...

The model does not account for:

* Large variance in response times
 Different “types” of requests

* Communication delays and jitter
* Other overheads

* Failing requests, exceptions, stack overflows, etc...

System behavior over time

* When should we measure throughput/response time?

Experiment life-cycle

10

Throughput [jobs/s]
(@)

Clients starting, caches
being populated, JIT
compiler working in

background, data is read
from disk, etc.

[ime [s]

This part is the one we
usually talk about when
reasoning about
throughput and response
time!

S18

10

12 1

IS8

Clients are stopping not
at the same time
(different classes of jobs,
imperfect load balancing,
etc.)

[E

6

19

Observing a system in its stable state

U
o

AN
o

N
o

Throughput [jobs/s]
(08
o

[EY
o

o

Crashes and
recovers?

N

Benefits from
caching effects?

N e ATTTNAN

Is garbage collection
kicking in?

10 15 20 25 30

Time [s]

PAMS18

—-System A
System B
——System C

20

Which database should we buy?

120

100

(00)
o

S
o

Throughput [jobs/s]
(@)
o

N
o

o

Time [h]

PAMS18

System D
System E

21

In conclusion

* We can discuss a system’s behavior even if treated as black box
* Interactive Response Time Law
e (Later lecture: Queuing theory)
* For deeper insights will have to consider what is inside

* Throughput/response time linked to each other in closed systems
* Throughput is meaningful as a function of the workload

* Always aim to measure systems in steady state
e Separate warm up and cool down phases
 Validate that behavior is actually stable over time

PAMS18

22

