Lecture 3: Introduction to Queuing Theory PAMS'18

Zsolt István

zsolt.istvan@imdea.org

Slide contents heavily influenced by G. Alonso's Advanced Systems Lab lecture slides.

1

What is a queuing system?

- Jobs arriving to a queue
- One/multiple servers dealing with the jobs from the queue
- When modeling queuing systems, it is important to talk about their properties
 - Some rules apply to all systems

Properties of queuing systems

3

- 1. What is the arrival rate?
- 2. What is the service time?
- 3. What is the service discipline?
- 4. What is the system capacity?
- 5. What is the number of servers?
- 6. What is the population size?

General Screening

PAMS18

Interarrival time

- $\tau_{1..N}$: Independent and Identically Distributed random variables
- Events come from a "process", Often assumed to be Poisson:
 - (1) the event is something that can be counted in whole numbers
 - (2) occurrences are independent, so that one occurrence neither diminishes nor increases the chance of another
 - (3) the average frequency of occurrence for the time period in question is known
 - (4) it is possible to count how many events have occurred, but we are not interested in how many have not occurred

Mean Arrival rate

- Interarrival time $\mathbf{\tau}$ is a random variable
 - Mean value: $E[\tau]$
- Mean arrival rate: $\lambda = 1/E[\tau]$
 - Does it look similar to something we discussed previously?
- Useful to assume fixed $\boldsymbol{\lambda}$ for modeling
 - Do real systems have fixed λ ?
- Examples:
 - A new pizza order is received on average every 3 minutes. The arrival rate is 20/hour.
 - The printer receives a new job to print on average every 100ms, the arrival rate is 10jobs/second. PAMS18

Service time

- Time to process a job ("useful work", no queueing)
 - Random variable: s
- Mean service rate µ = 1 / E[s]
 - What if we have *m* servers?
 - Not a random variable
- Example: pizza oven bakes pizza on average in 6 minutes. μ = 10/hour

A word on throughput

- The service rate of a system is rarely the measured throughput!
 - Throughput is client and workload dependent
 - Throughput only counts successful operations
- Is arrival rate the same as throughput?
 - In open systems?
 - In closed systems?
 - If there are no failed jobs?

Default assumptions for other properties

- What is the service discipline?
 - First come, first served (FIFO)
- What is the system capacity?
 - Large enough buffers \rightarrow Infinite buffers
- What is the population size?
 - Very large \rightarrow Infinite size

Equations valid for all queueing systems

- Load on system (traffic intensity): $\rho = \lambda/(m\mu)$
- Stability condition: $\rho < 1$ because this meant that $\lambda < (m\mu)$
 - What if $\rho = 1$? Can the system still be considered stable?
 - Remember arrival time is a random variable!
 - Once queueing starts, it never empties...

Traffic intensity example

- A USB thumb drive is serving 5k I/O ops/s
- The average time spent on the I/O operation is 0.1ms
- What is its utilization?
- $\rho = \lambda/(m\mu)$
- $\rho = 5k / (\mu)$
- $\mu = 1/0.1 = 10k$
- $\rho = 5k / 10k = 0.5 (50\%)$

More detailed metrics

• Number of jobs in the system is the sum of the jobs in the queue and the ones in service

• $n = n_s + n_q$

• Total time spent in system (<u>response time</u>) is the sum of time spent queuing and that in service

•
$$\mathbf{r} = \mathbf{w}_{q} + \mathbf{s}$$

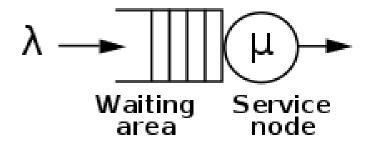
• Remember these are random variables, we'll speak of their expected value.

Little's law

- Remember: $n = n_s + n_q$
- The system as a whole: $E[n] = \lambda * E[r]$
- Only the queue part: $E[n_q] = \lambda * E[w_q]$
- $E[n_s] = \lambda * E[s] looks familiar?$
 - If m=1 and E[n_s]=1, the system is unstable!
- $\rho = \lambda/(m\mu) \rightarrow \rho = E[n_s]/m$

Quick overview of M/M/1 queues

- Interarrival times and service times Poisson
- Single server
- FIFO processing
- Parameters:
 - Mean arrival rate
 - Mean service rate



• Please look at the book for more detail and explanations. Have a look at the list of formulas.

Response time in M/M/1

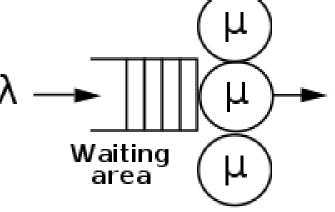
• The mean number of jobs in the system is computed using the probabilities of having 0..infinity jobs in the system.

$$E[n] = \sum_{n=1}^{\infty} n \cdot p^n = \sum_{n=1}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}$$

- Using Little's law (E[n] = $\lambda * E[r]$), we get
- $E[r] = \rho/(\lambda * (1-\rho)) = (\mu * (1-\rho))^{-1}$

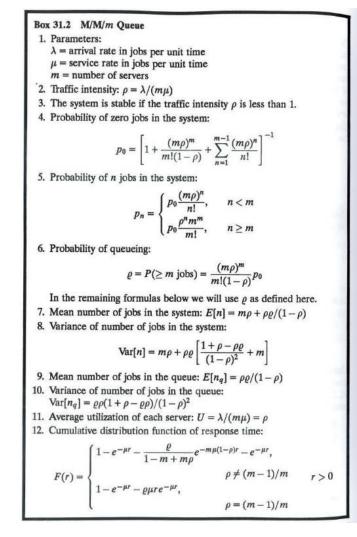
Quick overview of M/M/m queues

- Interarrival times and service times Poisson
- Single server
- FIFO processing
- m parallel servers (no queueing if the number of jobs <= m)
- Parameters:
 - Mean arrival rate
 - Mean service rate
 - Server parallelism
- Please look at the book for more detail and explanations. Have a look at the list of formulas.



All formulas for M/M/1 and M/M/m

Rox 31.1 M/M/1 Queue 1. Parameters: λ = arrival rate in jobs per unit time μ = service rate in jobs per unit time 2. Traffic intensity: $\rho = \lambda/\mu$ 3. Stability condition: Traffic intensity ρ must be less than 1. 4. Probability of zero jobs in the system: $p_0 = 1 - \rho$ 5. Probability of n jobs in the system: $p_n = (1 - \rho)\rho^n$, $n = 0, 1, ..., \infty$ 6. Mean number of jobs in the system: $E[n] = \rho/(1-\rho)$ 7. Variance of number of jobs in the system: $Var[n] = \rho/(1-\rho)^2$ 8. Probability of k jobs in the queue: $P(n_q = k) = \begin{cases} 1 - \rho^2, & k = 0\\ (1 - \rho)\rho^{k+1}, & k > 0 \end{cases}$ 9. Mean number of jobs in the queue: $E[n_q] = \rho^2/(1-\rho)$ 10. Variance of number of jobs in the queue: $Var[n_{q}] = \rho^{2}(1+\rho-\rho^{2})/(1-\rho)^{2}$ 11. Cumulative distribution function of the response time: $F(r) = 1 - e^{-r\mu(1-\rho)}$ 12. Mean response time: $E[r] = (1/\mu)/(1-\rho)$ 13. Variance of the response time: Var[r] = $\frac{1/\mu^2}{(1-\rho)^2}$ 14. *q*-Percentile of the response time: $E[r]\ln[100/(100-q)]$ 15. 90-Percentile of the response time: 2.3E[r]16. Cumulative distribution function of waiting time: $F(w) = 1 - \rho e^{-\mu w (1-\rho)}$ 17. Mean waiting time: $E[w] = \rho \frac{1/\mu}{1-\rho}$ 18. Variance of the waiting time: $Var[w] = (2 - \rho)\rho/[\mu^2(1 - \rho)^2]$ 19. q-Percentile of the waiting time: max $\left(0, \frac{E[w]}{\rho} \ln[100\rho/(100-q)]\right)$ 20. 90-Percentile of the waiting time: $\max\left(0, \frac{E[w]}{2} \ln[10\rho]\right)$ 21. Probability of finding *n* or more jobs in the system: ρ^n 22. Probability of serving n jobs in one busy period: $\frac{1}{n} {\binom{2n-2}{n-1}} \frac{\rho^{n-1}}{(1+\rho)^{2n-1}}$



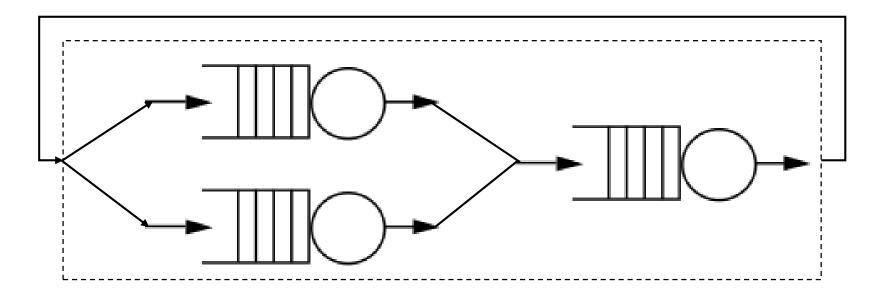
Box 31.2 Continued 13. Mean response time: $E[r] = \frac{1}{\mu} \left(1 + \frac{\rho}{m(1-\rho)} \right)$ 14. Variance of the response time: $Var[r] = \frac{1}{\mu^2} \left[1 + \frac{\rho(2-\rho)}{m^2(1-\rho)^2} \right]$ 15. Cumulative distribution function of waiting time: $F(w) = 1 - \rho e^{-m\mu(1-\rho)w}$ 16. Mean waiting time: $E[w] = E[n_q]/\lambda = \rho/[m\mu(1-\rho)]$ 17. Variance of the waiting time: $Var[w] = \rho(2-\rho)/[m^2\mu^2(1-\rho)^2]$ 18. *q*-Percentile of the waiting time: $max \left(0, \frac{E[w]}{\rho} \ln \frac{100\rho}{100-q} \right)$. 19. 90-Percentile of the waiting time: $\frac{E[w]}{\rho} \ln(10\rho)$ Once again, ρ in these formulas is the probability of *m* or more jobs in the system: $\rho = [(m\rho)^m/\{m!(1-\rho)\}]\rho_0$. For m = 1, ρ is equal to ρ and all of the formulas become identical to those for M/M/1 queues.

Exercise

- µ = 250/s
 - E[s] = ?
- $\lambda = 1200/s$
- What is better for clients? 5x M/M/1 or 1x M/M/m?
- For M/M/1: E[r] = 0.1s
- For M/M/m: E[r] = 0.022s
 - The jobs wait in a single queue and can go to any available server. In the other case they need to wait for their pre-chosen server to become available...

Hint: there are many tools/websites that help with computing the outputs of the models (e.g., https://www.supositorio.com/rcalc/rcalclite.htm)

Network of queues



- A collection of queue/server pairs
- Jobs "flow" through the network
- Can represent arbitrarily complex systems
- Open and <u>closed</u> variants

Properties of NoQ devices

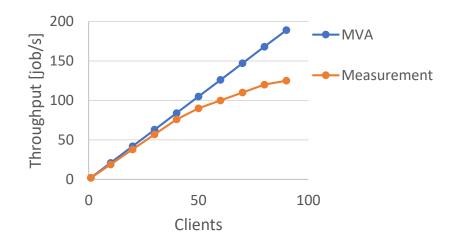
- Service discipline
 - FIFO (e.g., M/M/1 and M/M/m)
 - Delay center (imagine M/M/∞)
 - ...
- Job classes
 - All jobs are equal
- Job flow balance
 - Number of arrivals at each device equals number of leaving jobs
- One-step behavior
 - The state of the network changes only as a result of a job entering the system (a device)

Operational laws

- Valid for all devices
 - Arrival rate λ_i = (number of arrivals)/time = A_i/T
 - Throughput $X_i = (number of completions)/time = C_i/T$
 - Utilization $U_i = (busy time)/time = B_i/T$
 - Mean service time = (busy time)/(number of completions) = B_i/C_i
- Utilization Law
 - $U_i = B_i / T = C_i / T * B_i / C_i$
 - U_i=X_i * S_i (Device with highest utilization is the bottleneck device)
- Forced flow law
 - $A_i = C_i$
- System throughput X = (jobs completed)/time
 - Device throughput X_i = X * V_i
 - V_i is the visit ratio; how many times a job is handled by the device *i*

Mean Value Analysis (MVA)

- Algorithm to compute the behavior of a NoQ with increasing clients
 - Might have to map throughput levels to number of clients!



nputs: V = number of users	
Z = think time	
M = number of devices (not including terminals)	
S_i = service time per visit to the <i>i</i> th device	
V_i = number of visits to the <i>i</i> th device	
Outputs:	
X = system throughput	
Q_i = average number of jobs at the <i>i</i> th device	
\widetilde{R}_i = response time of the <i>i</i> th device	
R = system response time	
U_i = utilization of the <i>i</i> th device	
Initialization: FOR $i = 1$ TO M DO $Q_i = 0$	
Iterations:	
FOR $n = 1$ TO N DO	
BEGIN	
$(S_i(1+Q_i))$	Fixed capacity
FOR $i = 1$ TO M DO $R_i = \begin{cases} S_i(1 + Q_i) \\ S_i \end{cases}$	Delay centers
	Denig contoro
$R = \sum_{i=1}^{M} R_i V_i$	
$R = \sum_{i=1}^{K} R_i r_i$	
1=1	
$X = \frac{N}{Z + R}$	
FOR $i = 1$ TO M DO $Q_i = XV_iR_i$	
END	
Device throughputs: $X_i = XV_i$	
Device utilizations: $U_i = X S_i V_i$	