
1

Project Details
Performance Analysis and Modeling of Software Systems, Fall Semester 2018

Contact: Zsolt István, zsolt.istvan@imdea.org

The goal of the project is 1) to implement a multi-threaded application and benchmark it, 2) to analyze the

measurements and build a model of the system and 3) to determine the bottleneck of the system in terms of

performance.

The project is based on a simple Word Count application that has the goal of turning an input document into a

series of tuples in the form <word, count>, corresponding to each distinct word in the document and its

number of occurrences. In large machine learning pipelines, this operation is often used to determine the

similarity of two documents or to classify them into different categories based on their content. In our project,

however, we study this application without plugging it into a larger pipeline.

You will be given a skeleton of the project, with a simplistic, single-threaded implementation of a Word Count

server and clients that connect to it over TCP sockets (all run on the same physical machine). Your task will be

to extend this application with multi-threaded functionality and to instrument the code to provide more

insight into where time is spent during processing.

The project is an individual effort, your grade will come from, on the one hand, a final report and, on the other

hand, a presentation at the end of the seminar. It is important to note that the absolute performance of the

system you implement plays a smaller role in the final grade than your understanding of its behavior and the

quality of the report.

Deadlines
You will have to submit the final project report, as well as your code, by the 7th of December, 5PM.

You will have to submit the slides you will use for presenting the system by the 14th of December, 5PM (the

presentation will take place on the last seminar day, the 18th of December).

Deliverables
Submitting is done by sending me the files in question, as explained below, in an email, with the title “PAMS18

Project Submission” and “PAMS18 Slides Submission”.

The report is to be based on the outline provided on the seminar website. You can use any text editor and

plotting program of your choice, but the font size shall not be smaller than 11 points and the total length of

the document cannot exceed 8 pages. The submission format is PDF.

To submit the code of the project, please put all relevant files into a zip archive and attach them to the email.

In this zip, please include a folder that holds the experimental data that you used to generate the plots in the

report. If the resulting file size is larger than what you can attach to an email, keep the most important files in

the zip and omit the others (but don’t delete them from your computer in case we need to review them

together).

The slides should follow the template posted on the seminar website (don’t add or remove slides).

Project Skeleton
You will be provided with a working starting point of the project that consists of simple benchmarking clients

and a single-threaded server implementation.

Clients
The clients are single-threaded. They generate their own test document by reading from an input file (provided

with the skeleton) starting at a random offset. The length of a document is a start-up parameter. Once the

2

document has been generated, the client will start sending work to the server in a closed loop (the name and

port of the server is also a parameter). It will send the document N times (provided as a runtime parameter),

then exit.

While running, the clients will print statistics once every second, followed by a final statistics when they finish.

The final statistics includes a listing of the percentiles of the response times measured by the client.

Server
The Word Count application is implemented as a single server that uses Java NIO to accept TCP connections

and to read data from many the clients. Its implementation consists of a main loop that reads data from the

sockets as it becomes available, and enqueues it in client-specific buffers until the text of an entire document

has been received. The server uses a special separator character to recognize the end of the document (the

client will ensure that the separator is only present at the end of the document).

Once there is a document in the buffer of a client, the server will convert it to lower case and remove any non

‘a’-‘z’ characters and spaces. It then performs a word count on the resulting “stripped down” document. The

resulting table of <word,count> pairs is serialized and sent back to the client.

Communication protocol
The client and the server communicate over TCP sockets, using a very simple protocol:

1. The server opens a port it will listen on and accepts incoming connections.

2. The client sends a document to the server. The document is encoded as a string (new line characters

are removed), with a special separator character at the end (this is defined in code, but by default is

‘$’).

3. The server processes the document once it has been received in its entirety, and sends back the

<word, count> pairs to the client in a simple text-based format (word1,count1,word2,count2,…). The

end of the response is signaled using a newline character (‘\n’).

4. The client only parses the answer if it is running in debug mode, otherwise it waits until the end of

line character has been received and discards it immediately. This ensures that processing in the

client is not a performance bottleneck.

Features to Implement
You have to extend the system with the following features:

1. Cleaning of document from special words: Our input will be (fragments of) HTML documents that

contain both tags (text between a < and >) and the actual words we are interested in. Your task is to

extend the word count logic of the skeleton to disregard tags (even if it spans multiple words, e.g.,) and only count the remaining words (e.g. only keep “foo” from

“<p>foo</p></b”>.

2. Add fine-grained statistics gathering inside the server and print out the aggregate statistics once all

clients have disconnected (that is, the experiment is finished). The instrumentation of the code should

measure:

o time spent until the entire document has been received

o time spent cleaning the document (removing tags)

o time spent performing the word count

o time spent serializing the results

In terms of final aggregate printout, the average and the percentiles (0-100 in 1% steps) are needed. It

is not necessary to separate statistics per client, but you might consider using data structures

dedicated to each client before merging the results to avoid synchronization overheads.

3. Extend the server into a multi-threaded implementation where there are W worker threads

performing the word count (inter-client parallelism). Mapping clients to the threads should be done

consistently based on the client’s socket number (there are no explicit client identifiers defined in the

protocol).

3

Command Line Interface and Building
When extending the project skeleton, please leave the command line arguments of both the client and the

server unchanged, and make sure that these arguments change the behavior of your code as expected.

Do not add dependencies to you project (no external JAR files). You may use any program, scripting language,

etc., to process logs however – just make sure to explain the steps you took in the report.

For building and running the programs, please use the ANT build script provided (feel free to add more targets

but keep the original ones as well). This will allow us to quickly test your application and eventually replicate

the experiments you carried out.

